Zauważmy, że trójkąty [latex] riangle_{ABC}, riangle_{ADE} , i , riangle_{EFC}[/latex] są podobne, na mocy zasady kąt-kąt. Stosunek pól figur podobnych jest równy kwadratowi skali podobieństwa, zatem: [latex]dfrac{P_ riangle_{EFC}}{P_ riangle_{ADE}}=dfrac{12}{3}=4\ k=2\ {P_ riangle_{EFC}}=4P_ riangle_{ADE}\ dfrac{P_ riangle_{ABC}}{P_ riangle_{EFC}}=dfrac{9}{4}\ k=dfrac{3}{2}\ P_ riangle_{ABC}=dfrac{9}{4}cdot P_ riangle_{EFC}=dfrac{9}{4}cdot 12=27j^2[/latex] Odpowiedź: [latex]P_{ riangle_{ABC}}=27j^2.[/latex]
Trójkąty ABC, EFC oraz ADE są podobne (k,k,k) [latex]frac{P_{EFC}}{P_{ADE}} = frac{12}{3} =4 = (frac{h_{EFC}}{h_{ADE}})^{2}\\frac{h_{EFC}}{h_{ADE}} = 2\\h_{EFC} = 2h_{ADE}\h_{ABC} = 3h\\frac{P_{ABC}}{P_{EFC}} = (frac{3}{2})^{2}\\frac{P_{ABC}}{P_{EFC}} = frac{9}{4}\\P_{ABC} = frac{9}{4}*P_{EFC}}\\P_{ABC} = frac{9}{4}*12 = 27 [j^{2}][/latex]