[latex]F_g=G frac{Mm}{r^2} \ GMm=const \ frac{F_{g2}}{F_{g1}}= frac{64nN}{16nN}=4 \ frac{F_{g2}}{F_{g1}}= frac{G frac{Mm}{{r_2}^2}}{G frac{Mm}{{r_1}^2}} = frac{{r_1}^2}{{r_2}^2}= frac{(16cm)^2}{{r_2}^2}= frac{256cm^2}{{r_2}^2} \ frac{256cm^2}{{r_2}^2}=4 \ {r_2}^2= frac{256cm^2}{4}=64cm^2 \ r_2= sqrt{64cm^2}=8cm[/latex] odp. Odległość powinna wynosić 8 cm.
dane: F₁ = 16 nN r₁ = 16 cm F₂ = 64 nN szukane: r₂ = ? Rozwiązanie: [latex]F = Gcdot frac{m_1cdot m_2}{r^{2}}\\F_1 = Gcdotfrac{m_1m_2}{r_1^{2}}\F_2 = Gcdotfrac{m_1m_2}{r_2^{2}}\\frac{F_2}{F_1} =frac{Gcdot m_1m_2}{r_2^{2}}:frac{Gcdot m_1m_2}{r_1^{2}}=frac{r_1^{2}}{r_2^{2}} = (frac{r_1}{r_2})^{2}\\oraz\\frac{F_2}{F_1} = frac{64nN}{16nN} = 4[/latex] [latex](frac{r_1}{r_2})^{2} = 4 |()sqrt}\\frac{r_1}{r_2} = 2\\2r_2 = r_1 /:2\\r_2 = frac{1}{2}r_1=frac{1}{2}cdot 16cm\\r_2 = 8 cm[/latex] Odp. Szukana odległość to 8 cm.