Rozwiązania ( poprawione) w drugim w załaczniku
[latex]a)\ frac{12}{ sqrt{5} -1 } - frac{10}{ sqrt{5} } = frac{12}{ sqrt{5} -1 } *frac{ sqrt{5} +1 }{ sqrt{5} +1 }- frac{10}{ sqrt{5} } *frac{ sqrt{5} }{ sqrt{5}}=frac{12(sqrt{5}+1)}{5-1}-frac{10sqrt{5}}{5}=\ \ =frac{ ot12^3(sqrt{5}+1)}{ ot4^1}-2sqrt{5}=3sqrt{5}+3-2sqrt{5}=oxed{3+sqrt{5}}[/latex] [latex]b)\ ( frac{1}{ sqrt{5} +2 } ) ^{2} = frac{1^2}{ (sqrt{5} +2)^2 }=frac{1}{5+4sqrt{5}+4}=frac{1}{9+4sqrt{5}}*frac{9-4sqrt{5}}{9-4sqrt{5}}=frac{9-4sqrt{5}}{81-80}=\ \ =frac{9-4sqrt{5}}{1}=oxed{9-4sqrt{5}}[/latex] [latex]c)\ sqrt{50} - sqrt{3}* sqrt{24} + 2 sqrt{32} = sqrt{25*2} - sqrt{3*24} + 2 sqrt{16*2} =\ \=5sqrt{2}-sqrt{72}+2*4sqrt{2}=5sqrt{2}-sqrt{2*36}+8sqrt{2}=\ \=5sqrt{2}-6sqrt{2}+8sqrt{2}=oxed{7sqrt{2}}[/latex]