1. Trzy kolejne wyrazy ciągu geometrycznego spełniaja warunek: x(x-2)=3² x²-2x-9=0 (x²-2x+1)-1-9=0 (x-1)²-10=0 (x-1-√10)(x-1+√10)=0 x=1+√10 lub x=1-√10. 2. a₈-a₃ = 5r 5r=25-10=15 /:5 r=3 a₁+2r=a₃ a₁+2*3=10 a₁=10-6=4 a₁₀=a₁+9r a₁₀=4+9*3=4+27=31 S₁₀=(a₁+a₁₀)/2 * 10 S₁₀= 5(4+31)=5*35=175 3. a₁=-6 r=-1-(-6)=-1+6=5 a₂₀=a₁+19r a₂₀=-6+19*5=95-6=89 4. a₄*q³=a₇ a₇=2*(-1/2)³ = -1/8*2 = -1/4 a₁*(-1/2)³=2 a₁*(-1/8)=2 /*(-8) a₁=-16 S₅=a₁ * (1-q⁵)/(1-q) S₅= -16 *(1-(-1/2)⁵)/(1-(-1/2))= -16 * (1+1/32)/(1+1/2) S₅=-16*33/32*2/3 = -16*11*1/16= - 11
1. a₁ = x - 2 a₂ = 3 a₃ = x x = ? Z własności ciągu geometycznego: [latex]a_1 cdot a_3 = a^{2}_2}\\(x-2)x = 3^{2}\\x^{2}-2x = 9\\x^{2}-2x - 9 = 0\\Delta = 4 + 36 = 40\\sqrt{Delta} = sqrt{40} = sqrt{4cdot10} = 2sqrt{10}\\x_1 = frac{2-2sqrt{10}}{2} = 1-sqrt{10}\\x_2 = frac{2+2sqrt{2}}{2} = 1+sqrt{10}[/latex] [latex]2.\a_3 = 10\a_8 = 25\S_{10} = ?\\a_8 - a_3 = 25-10 = 15\\a_1+7r - a_1 - 2r = 15\\5r = 15 /:5\\r = 3[/latex] [latex]a_1 = a_3 - 2r = 10-2cdot3 = 10-6\\a_1 = 4[/latex] [latex]S_{10} = frac{2a_1+(n-1)r}{2}\\S_{10} = frac{2cdot4+9cdot3}{2}cdot10 = (8+27)cdot5 =35cdot5 = 175[/latex] [latex]3.\a_1 = -6\a_2 = -1\a_3 = 4\a_{20} = ?\\r = a_2 - a_1 = -1-(-6) = -1+6 = 5\\a_{20} = a_1 + 19r = -6 + 19cdot5 = -6 + 95 = 89[/latex] [latex]4.\a_4 = 2\q = -frac{1}{2}\a_7 = ?\S_{5} = ?\\a_4 = a_1 cdot q^{3}\\a_1 cdot(-frac{1}{2})^{3} = 2\\a_1 cdot(-frac{1}{8})=2 |cdot(-8)\\a_1 = -16[/latex] [latex]a_{n} = a_1} cdot q^{n-1}\\a_7 = -16cdot(-frac{1}{2})^{6}=-16cdotfrac{1}{64} = -frac{1}{4}[/latex] [latex]S_{n} = a_1 cdot frac{1-q^{n}}{1-q}\\S_{5} = -16cdotfrac{1-(-frac{1}{2})^{5}}{1-(-frac{1}{2})}=-16cdotfrac{frac{32}{32}+frac{1}{32}}{frac{2}{2}+frac{1}{2}}=-16cdotfrac{33}{32}cdotfrac{2}{3} = -16cdotfrac{11}{16} = -11[/latex]