Korzystając z tożsamości trygonometrycznych, oblicz pozostałe wartości funkcji trygonometrycznych kąta ostrego alfa. a) coś alfa= pierwiastek7/3 b)sin beta=7/8 c)tg y = 1/2 d) ctg gamma = 8

Korzystając z tożsamości trygonometrycznych, oblicz pozostałe wartości funkcji trygonometrycznych kąta ostrego alfa. a) coś alfa= pierwiastek7/3 b)sin beta=7/8 c)tg y = 1/2 d) ctg gamma = 8
Odpowiedź

a)    cos α=√7/3                  0 st<α<90 st     sin²α+cos²α=1    sin²α+(√7/3)²=1    sin²α+7/9=1   sin²α=2/9 sinα=√2/3 ====================    tgα=sinα/cosα tgα=(√2/3):(√7/3) tgα=(√2/3)·(3/√7) tgα=√2/√7 tgα=√14/7 ===================================== ctgα=1/tgα ctgα=√7/√2 ctgα=√14/2 =============================================================   b)  sinβ=7/8 sin²β+cos²β=1 49/64+cos²β=1 cos²β=15/64 cosβ=√15/8 ====================================== tgβ=sinβ/cosβ tgβ=7/8:√15/8 tgβ=7/√15 tgβ=(7√15)/15 ======================= ctgβ=1/tgβ ctgβ=1:7/√15 ctgβ=√15/7 =============================================================   c)      tgy=1/2 tutaj tworzymy uklad rownan   {siny/cosy=1/2 {sin²y+cos²y=1   {cosy=2siny    podstawiamy do 2. rownania sin²y+4sin²y=1   5sin²y=1  sin²y=1/5 siny=√5/5 ==================== cosγ=2sin γ cosγ=(2√5)/5  ============================   ctgy=1/tgy ctgy=2 ======================================================================   d)  ctgγ=8   tgγ=1/8   tworzymy uklad rownan {cosγ/sinγ=8 {sin²γ+cos²γ=1    {cosγ=8sinγ    podstawiamy do 2. rown. {sin²γ+64sin²γ=1    65sin²γ=1 sin²γ=1/65 sinγ=√65/65 ======================== cosγ=(8√65)/65 =================================================================== 

a) α < 90 cosα = √7/3         sin²α + cos²α = 1         sin²α = 1 - cos²α = 1-(√7/3)² = 1-7/9 = 9/9 - 7/9 = 2/9 sinα = √(2/9) = √2/3 tgα = siα/cosα = √2/3 : √7/3 = √(2/7)          tgα * ctgα = 1 ctgα = 1/√(2/7) *√(2/7)/√(2/7 = √(2/7)/(2/7) = 7√(2/7)/2 = 3,5√(2/7)     b) sinβ = 7/8          cos²β = 1-sin²β = 1-(7/8)² = 1- 49/64 = 64/64 - 49/64 = 15/64 cosα = √(15/64) = √15/8 tgβ = sinβ/cosβ = 7/8 : √15/8 = 7/8 * 8/√15 = 7/√15 * √15/√15 = 7√15/15 ctgβ = 15/7√15 * √15/√15 = √15/7   c) tgγ = 1/2 ctgγ = 1: 1/2 = 2        b = 1,  a = 2        c² = a²+b² = 2²+1² = 5        c = √5 sinγ = b/c = 1/√5 * √5/√5 = √5/5 cosγ = a/c = 2/√5 * √5/√5 = 2√5/5   d) ctgδ = 8 tgδ = 1/8        a = 8,  b = 1         c² = a²+b² = 8²+1² = 64+1 = 65        c = √65 sinδ = b/c = 1/√65 *√65/√65 = √65/65 cosδ = a/c = 8/√65 *√65/√65 = 8√65/65  

Dodaj swoją odpowiedź