Równanie fali liniowej harmonicznej ma postac y(t)=6*10^-6 sin(1900t + 5.72x). Znajdz okres,częstotliwosc,amplitude ,długośc i predkośc rozchodzenia sie fali.

Równanie fali liniowej harmonicznej ma postac y(t)=6*10^-6 sin(1900t + 5.72x). Znajdz okres,częstotliwosc,amplitude ,długośc i predkośc rozchodzenia sie fali.
Odpowiedź

y(t) = Asin(ωt + kx + φ) A = 6*10⁻⁶ = amplituda ωt=2π/T * t = 2πf t ω=1900=2π/T  T=2π/1900=π/950 = okres f=1/T=950/π = częstotliwość φ=0 (faza zero) kx=2π/λ * x = 5,72x  ⇒  λ = 2π/5,72 ≈ 1,1  Długość to droga fali wykonana w czasie 1 okresu (T)  λ=vT v= λ/T= λω/(2π) =2πω/(2πk)=ω/k=1900/5,72 = 332 jeśli wartość prędkości wyrażona jest w m/s, to jest to prędkość rozchodzenia dźwięku w powietrzu.         

Dodaj swoją odpowiedź