Rozwiaz rownanie wymierne i okresl dziedzine a) 4 przez x+3 = 1 b) 3x-1 przez 9-5 x = 1/2 c) 1 przez x + 1 przez 2x = 6 d) 2 przez 3x + 5 przez 6 x = x e) 4 x - 1 przez x = 3x

Rozwiaz rownanie wymierne i okresl dziedzine a) 4 przez x+3 = 1 b) 3x-1 przez 9-5 x = 1/2 c) 1 przez x + 1 przez 2x = 6 d) 2 przez 3x + 5 przez 6 x = x e) 4 x - 1 przez x = 3x
Odpowiedź

a) 4 przez x+3 = 1   4/(x+3)=1   D: x różne od -3 (minus 3) – mianownik nie może się równać 0   mnożymy stronami przez mianownik 4/(x+3)=1 /*(x+3)   4=x+3 x=4-3 x=1   x = 1 różne od -3 więc należy do dziedziny   b) 3x-1 przez 9-5 x = 1/2 (3x-1)/(9-5x)=1/2   Dziedzina: Mianownik róźny od 0, więc x musi być różne od 9/5 (1,8)   Mnożymy stronami przez mianowniki (czyli 2*(9-5x)) 2*(3x-1)=9-5x   6x-2 = 9 -5x 11x=11 x = 1 1 różny od 9/5, więc należy do dziedziny i jest rozwiązaniem     c. 1 przez x + 1 przez 2x = 6   (1/x)+(1/2x)=6   Dziedzina: x różne od 0 i 2x różne od 0 => więc x musi być różne od 0   Po lewej stronie wspólny mianownik i dodajemy liczniki   (2+1)/2x=6   mnożymy stronami przez mianownik i mamy 3 = 6*2x 12x=3 x=1/4 => różne od zero – więc należy do dziedziny i jest to nasze rozwiązanie       d. 2 przez 3x + 5 przez 6 x = x   (2/3x)+(5/6x) = x   Dziedzina => mianowniki muszą być różne od 0 więc x różne od 0   Wspólny mianownik po lewej stronie (2*2 +5)/6x = x 9/6x=x   3/2x=x /*2x - mnożymy stronami przez mianownik   3=2x*x   2x^2=3   x^2 = 1,5   więc mamy dwa rozwiązania:   x1 = pierwiastek (1,5) oraz x2 = minus pierwiastek(1,5) Obydwa różne od 0, więc należą do dziedziny   e) 4 x - 1 przez x = 3x   (4x-1)/x = 3x   Dziedzina => mianownik różny od 0 więc x różne od 0   mnożymy stronami przez x   4x-1 = 3x^2 rozwiązujemy równanie kwadratowe: -3x^2+4x-1=0   delta= 16+9 = 25 = 5^2   x1=(-4-5)/(-6) = -9/-6 = 1,5 x2= (-4+5)/(-6) = 1/(-6) = - 1/6   zarówno x1 jak i x2 należą do dziedziny (różne od 0) więc to równanie ma 2 rozwiązania   :)

Dodaj swoją odpowiedź