Log 1/3 27 Log4 16 Log 2/5 4/25 Log5 1/625 Log 1/3 27 Log 5 25 do potęgi 4   Oblicz jak to : Log 1/5 625 (1/5) do x = 5 do 4 –x =4 x=4

Log 1/3 27 Log4 16 Log 2/5 4/25 Log5 1/625 Log 1/3 27 Log 5 25 do potęgi 4   Oblicz jak to : Log 1/5 625 (1/5) do x = 5 do 4 –x =4 x=4
Odpowiedź

def logarytmu loga b = c  --> a^c=b   Log 1/3 27=-3 Log4 16=2 Log 2/5 4/25=2 Log5 1/625 = -4 Log 1/3 27=-3 Log 5 25 do potęgi 4 = log5 5^8 = 8 log[1/5] 625=x [1/5]^x=625 [1/5]^x=[1/5]^(-4) x=-4   [1/5]^x=625 [5^-1]^x=5^4 5^(-x)=5^4 -x=4 x=-4

log 1/3 [ 27 ] = - 3, bo  ( 1/3)^( -3) = 3^3 = 27 ----------------------------------------------------------- log 4 [ 16 ] = 2 ,  bo 4^2 = 16 -------------------------------------- log 2/5 [ 4/25] = 2 , bo ( 2/5)^2 = 4/25 ----------------------------------------------- log 5 [ 1/625 ] = - 4,  bo 5^(-4) = 1 / [ 5^4] = 1/625 ----------------------------------------------------------------- log 5 [ 25 ^4 ] = 4* log 5 [25] = 4* 2 = 8, bo 5^2 = 25 --------------------------------------------------------------------  

Dodaj swoją odpowiedź