1. [latex]a)\48\% - 6 |:6\8\% - 1 |:2\4\% - 0,5 |cdot25\100\% - 12,5[/latex] [latex]b)\60 - 100\% |:100\0,6 - 1\% |cdot3\1,8 - 3\%\\100\%+3\%=103\% o60+1,8=61,8[/latex] [latex]c)\100\% - 7 |:100\1\% - 0,07 |cdot8\8\% - 0,56\\100\%-8\%=72\% o7-0,56=6,44[/latex] [latex]d)\120\% - 25 |:12\10\% - dfrac{25}{12} |cdot10\100\% = dfrac{250}{12}=dfrac{125}{6}=20dfrac{5}{6}[/latex] 2. [latex]a)\6 - {displaystyle 15{}^{0!}!/!_{00}} |:3\2 - {displaystyle 5{}^{0!}!/!_{00}} |cdot200\400 - {displaystyle 1000{}^{0!}!/!_{00}}\\{displaystyle 1000{}^{0!}!/!_{00}} to 400a\\1ha=100a stad 400a=oxed{4ha}[/latex] Odp: Pole ma 4ha. [latex]b)\1litr=1dm^3\1dm=10cm o1dm^3=1000cm^3\czyli 1litr=1000cm^3\\8litr.ow=8000cm^3\\{displaystyle a{}^{0!}!/!_{00}}=dfrac{a}{1000} o{displaystyle 2{}^{0!}!/!_{00}}=dfrac{2}{1000}=0,002\\{displaystyle 2{}^{0!}!/!_{00}} z 8000cm^3 to 0,002cdot8000cm^3=oxed{16cm^3}[/latex]
Rozwiązania w załączniku.