Zapisz równanie okręgu o średnicy AB, gdzie A(0,1) B(12,5) Z góry dziękuje
Zapisz równanie okręgu o średnicy AB, gdzie A(0,1) B(12,5) Z góry dziękuje
Wyznaczamy środek okręgu, czyli środek średnicy, za pomocą wzoru : (Xa+Xb/2, Ya+Yb/2) S(0+12/2 , 1+5/2) S(6,3) Wyznaczamy promień, który jest połową średnicy. Długość średnicy ze wzoru na długość odcinka: |AB|=(xb-xa)do kwadratu +(yb-ya)do kwadratu pod pierwiastkiem 1/2|AB|=r |AB|=pierwiastek(12-0)kwadrat + (5-1)kwadrat = pierwiastek z 144+16= pierwiastek z 160 = pierwiastek z 16*10 = 4 pierwiastki z 10. r= 4 pierwiastki z 10/2 r=2 pierwiastki z 10. Równanie okręgu : (x-a)kwadrat + (y-b)kwadrat = r kwadrat (x-6)do kwadratu + (x-3)do kwadratu = 40