Zad. 4 Dana jest funkcja f(x) = x2 +bx +2. Wyznacz b, jeśli wykres funkcji f jest styczny do osi OX. Zad.5  Wykresem funkcji f(x) = ax2 +bx+c jest parabola o wierzchołku W (1,5). Wyznacz a, b i c, jeśli P(2,2) należy do tej paraboli.

Zad. 4 Dana jest funkcja f(x) = x2 +bx +2. Wyznacz b, jeśli wykres funkcji f jest styczny do osi OX. Zad.5  Wykresem funkcji f(x) = ax2 +bx+c jest parabola o wierzchołku W (1,5). Wyznacz a, b i c, jeśli P(2,2) należy do tej paraboli.
Odpowiedź

4. f(x) = x2 +bx +2     y = 0 ⇔ x² + bx + 2 = 0                Δ = b² - 4 * 1 * 2 = b² - 8 Δ = 0 b² - 8 = 0 b² = 8 b = √8   lub   b = -√8 b = 2√2          b = - 2√2   2. f(x) = ax2 +bx+c W = (1, 5)  tzn że p = 1  i q = 5 f(x) = a(x - p)² + q    i  P = (2,2)                                               x  y 2 = a(2 - 1)² + 5 2 = a + 5 a = - 3   p = -b/2a 1 = -b/-6 -6 = -b b = 6   q = -Δ/4a 5 = -Δ / -12 -60 = -Δ Δ = 60 b² - 4ac = 60 36 - 4 * (-3) * c = 60 36 + 12c = 60   /:12 3 + c = 5 c = 2   odp. a = -3, b = 6, c = 2

4. skoro styczny do osi ox to jedno mzerowe a=1   b   c=2 Δ=0 Δ=b² -4ac  Δ=b² - 4·1·2=b² -8 b² -8=0 b²=8 b=√8=2√2  ∨  b= -2√2 5. xw=1 yw=5 f(2)=2   -b/2a=1 -Δ/4a=5 2= 4a+2b+c   -b=1·2a -(b² -4ac )/4a=5 2= 4a+2b+c   b= -2a -(b² -4ac )=5·4a 2= 4a+2b+c   -( (-2a)² -4ac )=5·4a 2= 4a+2(-2a)+c   -4a²+4ac=20a 2=c   -4a²+4a·2=20a -4a²+8a-20a=0 -4a² -12a=0 -4a(a +3)=0 a=0  ∨  a= -3     a≠0  skoro to ma byc parabola   b= -2a b= -2·(-3)=6 odp a= -3   b=6    c=2

Dodaj swoją odpowiedź