Boki trójkąta równoramiennego ABC mają długość AC=BC=15 cm, AB = 18cm. Punkty D i E są odpowiednio środkami ramion AC i BC tego trójkąta. Wyznacz obwód trójkąta AED.

Boki trójkąta równoramiennego ABC mają długość AC=BC=15 cm, AB = 18cm. Punkty D i E są odpowiednio środkami ramion AC i BC tego trójkąta. Wyznacz obwód trójkąta AED.
Odpowiedź

AB = a = 18 cm b = AC = BC = 15 cm D  - środek odcinka AC E  - środek odcinka BC więc AD = 15 cm : : 2 = 7,5 cm Z Tw. Talesa DE     CD ----  = ----  AB     AC czyli DE      7,5      1 ----  =  ---- =  --- 18       15       2 więc DE = 9 ------------- Trapez ABED jest równoramienny x = ( AB - DE) / 2 = ( 18 - 9 ) / 2 = 9/2 = 4,5 h  - wysokość  tego trapezu Mamy h^2 + x^2 = BE^2 h^2 + 4,5^2 = 7,5^2 h^2 = 56,25 - 20,25 = 36 więc h = 6 ------- AE^2 = ( 18 - x)^2 + h^2 = 13,5^2 + 6^2 = 182,25 + 36 = 218,25 = 21 825 / 100 AE^2 = ( 225 * 97) / 100 czyli AE = ( 15 * p(97) )/ 10 = 1,5 p(97) Obwód trójkąta AED L = AE + DE + AD = 1,5 p(97) + 9 + 7,5 = 16,5 + 1,5 p(97) Odp. L = [ 16,5 + 1,5 p(97) ] cm =============================   p(97)  - pierwiastek kwadratowy z  97    

Dodaj swoją odpowiedź
Matematyka

Boki trójkąta równoramiennego ABC mają długość : IACI = IBCI = 15cm , AB = 18cm. Punkty D i E są środkami odpowiednio ramion AC i BC tego trójkąta. Wyznacz obwód trójkąta AED. Za dobrą odp. daję NAJ

Boki trójkąta równoramiennego ABC mają długość : IACI = IBCI = 15cm , AB = 18cm. Punkty D i E są środkami odpowiednio ramion AC i BC tego trójkąta. Wyznacz obwód trójkąta AED. Za dobrą odp. daję NAJ...