Rozwiąż nierówność:   a) [latex]-5(x+ sqrt{2})^2 geq 0[/latex] b) [latex](2x - 3)^2 > -1[/latex] c) [latex](x+2)^2 leq 12x[/latex]   Prosze o pomoc i wytlumaczenie

Rozwiąż nierówność:   a) [latex]-5(x+ sqrt{2})^2 geq 0[/latex] b) [latex](2x - 3)^2 > -1[/latex] c) [latex](x+2)^2 leq 12x[/latex]   Prosze o pomoc i wytlumaczenie
Odpowiedź

[latex]\a) \-5(x+ sqrt{2})^2 geq0 \x+sqrt2=0 \x=-sqrt2[/latex] Lewa strona przyjmuje wartosci niedodatnie, stad jedynym rozwsiazaniem, gdy nawias = 0. b) Nierownosc tozsamosciowa, wyrazenie do kwadratu jest nieujemne, stad x∈R. c)[latex]\c) \(x+2)^2 leq 12x \x^2+4x+4-12xleq0 \x^2-8x+4leq0 \Delta=8^2-4*4=64-16=48 \sqrtDelta=sqrt{48}=4sqrt3 \m.z. x=frac{8-4sqrt3}{2}=4-2sqrt3 vee x=4+2sqrt3 \Odp. xin<4-2sqrt3, 4+2sqrt3>[/latex] a>0 ramiona paraboli do gory, wartosci niedodatnie trojmian przyjmuje pomiedzy miejscami zerowymi.

Dodaj swoją odpowiedź