DZIEKI OKULAROM O ZDOLNOSCI SKUPIAJACEJ Z= 2D DALEKOWIDZ WIDZI DOBRZE Z ODLEGLOSI DOBREGO WIDZENIA 25 CM. Z JAKIEJ ODLEGLOSCI WIDZI ON DOBRZE BEZ OKULAROW? Znalazlem wzór (dobry) Z okularów + Z oka= 1/d + 1/y Pytanie skąd wzieło się 1/d + 1/y?

DZIEKI OKULAROM O ZDOLNOSCI SKUPIAJACEJ Z= 2D DALEKOWIDZ WIDZI DOBRZE Z ODLEGLOSI DOBREGO WIDZENIA 25 CM. Z JAKIEJ ODLEGLOSCI WIDZI ON DOBRZE BEZ OKULAROW? Znalazlem wzór (dobry) Z okularów + Z oka= 1/d + 1/y Pytanie skąd wzieło się 1/d + 1/y?
Odpowiedź

Odp. d - zdolność skupiająca soczewki. Masz w treści podane : D = 2[D] - dioptrie. Pamiętaj! Zdolność skupiajaca D = 1 / f ; gdzie: f - długosc ogniskowej w [m]. y - odległość obrazu od soczewki skupiającej , masz podane , f = 25[cm ] = 0,25[m]. Podstaw to do wzoru i oblicz x - odległość przedmiotu od soczewki. Tam nie masz x , ale to musisz przyjąć jak tę odległość. Rónanie soczewki skupiającej:  1 / x + 1 / y = 1 / f

dane: Z = 2 D d = 25 cm = 0,25 m szukane: d₁ = ?   Rozwiazanie: Korzystamy z równania soczewki, przyjmujac y = d a)  gdy widzi z odległosci d₁ 1/x + 1/d₁ = 1/f b)  gdy widzi po załozeniu okularów o ogniskowej f₁ 1/x + 1/d = 1/f + 1/f₁  gdzie: x - odległość przedmiotu od oka f - ogniskowa soczewki oka  f₁ - ogniskowa soczewki okularów   Otrzymujemy układ równań 1/x + 1/d = 1/f + 1/f₁ 1/x + 1/d ₁ = 1/f ----------------------  -  (odejmujemy stronami) 1/d - 1/d₁ = 1/f₁ 1/f₁ = Z 1/d - 1/d₁ = Z 1/d₁ = 1/d - Z 1/d₁ = 1/d - (Z·d)/d 1/d₁ = (1-Z·d)/d d₁ = d/(1-Z·d) d₁ = 0,25m/(1-2·0,25) = 0,25m/0,5 d₁ = 0,5 m ========

Dodaj swoją odpowiedź