[latex]a)\a_n=n^2-4n-5\a_{n+1}=(n+1)^2-4(n+1)-5=n^2+2n+1-4n-4-5\=n^2-2n-8\\a_{n+1}-a_n=n^2-2n-8-(n^2-4n-5)\=n^2-2n-8-n^2+4n+5=2n-3>0 dla ninmathbb{N^+}-c. rosnacy\\b)\a_n=4+frac{1}{n}\a_{n+1}=4+frac{1}{n+1}\\a_{n+1}-a_n=4+frac{1}{n+1}-(4+frac{1}{n})=4+frac{1}{n+1}-4-frac{1}{n}\=frac{n}{n(n+1)}-frac{n+1}{n(n+1)}=frac{-1}{n(n+1)}<0 dla ninmathbb{N^+}-c. malejacy[/latex] [latex]c)\a_n=-frac{3n+5}{n+1}\\a_{n+1}=-frac{3(n+1)+5}{(n+1)+1}=-frac{3n+3+5}{n+2}=-frac{3n+8}{n+2}\\a_{n+1}-a_n=-frac{3n+8}{n+2}-(-frac{3n+5}{n+1})=-frac{(3n+8)(n+1)}{(n+2)(n+1)}+frac{(3n+5)(n+2)}{(n+2)(n+1)}\=frac{3n^2+6n+5n+10-3n^2-3n-8n-8}{(n+2)(n+1)}\=frac{2}{(n+2)(n+1)}>0 dla ninmathbb{N^+}-c. rosnacy[/latex]
a) [latex]a _{n} =n ^{2} -4n-5\a _{n+1} =(n+1) ^{2} -4(n+1)-5\a _{n+1}=n ^{2} +2n+1-4n-4-5\a _{n+1} = n^{2}-2n-8\a _{n+1}-a _{n} = n^{2} -2n-8- n^{2} +4n+5=2n-3 [/latex] n należy do N+, a zatem ciąg jest rosnący. b) [latex]a _{n}=4+ frac{1}{n} \a _{n+1} =4+ frac{1}{n+1} \a _{n+1} -a _{n} =4+ frac{1}{n+1}-4- frac{1}{n} = frac{1}{n+1} - frac{1}{n}= frac{n}{n(n+1)} - frac{n+1}{n(n+1)} = frac{-1}{n(n+1)} [/latex] n należy do N+, więc ciąg będzie malejący. c) [latex]a _{n} =- frac{3n+5}{n+1} \a _{n+1} =- frac{3(n+1)+5}{(n+1)+1} =- frac{3n+3+5}{n+2}=- frac{3n+8}{n+2}\a _{n+1}-a _{n} =- frac{3n+8}{n+2} + frac{3n+5}{n+1} = -frac{(3n+8)(n+1)}{(n+1)(n+2)} + frac{(3n+5)(n+2)}{(n+1)(n+2)} =\ frac{-3 n^{2}-3n-8n-8+3n ^{2} +6n+5n+10}{(n+1)(n+2)} = frac{2}{(n+1)(n+2)} [/latex] n należy do N+, więc ciąg jest rosnący.