Dwa wahadła matematyczne różniące się długościa (delta l) =14 cm wprawiono w ruch harmoniczny w tej damej chwili. Zauwazono, że na n1=8 pełnych wahnięć pierwszego wahadła przypada n2=6 pełnych wahnięć drugiego wahadł. Jakie są długości wahadeł? 

Dwa wahadła matematyczne różniące się długościa (delta l) =14 cm wprawiono w ruch harmoniczny w tej damej chwili. Zauwazono, że na n1=8 pełnych wahnięć pierwszego wahadła przypada n2=6 pełnych wahnięć drugiego wahadł. Jakie są długości wahadeł? 
Odpowiedź

Wzór na okres drgań wahadła matematycznego: [latex]T=2 pi sqrt{ frac{l}{g} } [/latex] wiemy że okres drgań pierwszego wahadła [latex]T_1[/latex] ma się do [latex]T_2[/latex] jak: [latex] frac{T_1}{T_2}= frac{n_1}{n_2}= frac{4}{3}=>T_1= frac{4}{3}T_2 [/latex] Mamy: [latex]T_1=2 pi sqrt{ frac{l}{g} } [/latex] [latex]T_2=2 pi sqrt{ frac{l-14}{g} }= frac{3}{4}*2 pi sqrt{ frac{l}{g} } [/latex] Reszta w załączniku.    Jeśli nie dasz rady rozczytać, to wyszło: [latex]l=32[/latex] i [latex]l-14=18m[/latex]

Dodaj swoją odpowiedź