zadania w załączniku
[latex]b) frac{6}{5sqrt3}cdotfrac{sqrt3}{sqrt3}=frac{6sqrt3}{5cdot3}=frac{2sqrt3}{5}\\i) frac{14}{3-sqrt2}cdotfrac{3+sqrt2}{3+sqrt2}=frac{14(3+sqrt2)}{3^2-(sqrt2)^2}=frac{14(3+sqrt2)}{9-2}=frac{14(3+sqrt2)}{7}=2(3+sqrt2)\\j) frac{4}{sqrt6-2}cdotfrac{sqrt6+2}{sqrt6+2}=frac{4(sqrt6+2)}{(sqrt6)^2-2^2}=frac{4(sqrt6+2)}{6-4}=frac{4(sqrt6+2)}{2}=2(sqrt6+2)[/latex] [latex]k) frac{sqrt3}{2+sqrt3}cdotfrac{2-sqrt3}{2-sqrt3}=frac{2sqrt3-3}{2^2-(sqrt3)^2}=frac{2sqrt3-3}{4-3}=2sqrt3-3\\l) frac{6}{sqrt5+sqrt2}cdotfrac{sqrt5-sqrt2}{sqrt5-sqrt2}=frac{6(sqrt5-sqrt2)}{(sqrt5)^2-(sqrt2)^2}=frac{6(sqrt5-sqrt2)}{5-2}=frac{6(sqrt5-sqrt2)}{3}=2(sqrt5-sqrt2)\\m) frac{3sqrt3}{2sqrt3-3}cdotfrac{2sqrt3+3}{2sqrt3+3}=frac{6cdot3+9sqrt3}{(2sqrt3)^2-3^2}=frac{18+9sqrt3}{12-9}=frac{9(2+sqrt3)}{3}=3(2+sqrt3)[/latex] [latex]n) frac{sqrt7-2}{sqrt7+2}cdotfrac{sqrt7-2}{sqrt7-2}=frac{(sqrt7-2)^2}{(sqrt7)^2-2^2}=frac{7-4sqrt7+4}{7-4}=frac{11-4sqrt7}{3}\\\©DRK[/latex]