Punkty A = (-6,0) i B = (20,0)  są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB. Wierzchołek C leży na prostej o równaniu y=x . Oblicz współrzędne punktu C.

Punkty A = (-6,0) i B = (20,0)  są wierzchołkami trójkąta prostokątnego ABC o przeciwprostokątnej AB. Wierzchołek C leży na prostej o równaniu y=x . Oblicz współrzędne punktu C.
Odpowiedź

C=(c, c) [latex]|AB|=sqrt{20+6)^2+(0-0)^2}=26[/latex] [latex]|AC|=sqrt{(c+6)^2+(c-0)^2}=sqrt{c^2+12c+36+c^2}=sqrt{2c^2+12c+36}[/latex] [latex]|BC|=sqrt{(c-20)^2+(c-0)^2}=sqrt{c^2-40c+400+c^2}=sqrt{2c^2-40c+400}[/latex] [latex]|AC|^2+|BC|^2=|AB|^2\2c^2+12c+36+2c^2-40c+400=676\4c^2-28c-240=0 /:4\c^2-7c-60=0\Delta=49+240=289\c_1=frac{7-17}{2}=-5 vee c_2=frac{7+17}{2}=12[/latex] [latex]C_1=(-5; -5) vee C_2=(12; 12)[/latex]

Dodaj swoją odpowiedź