a) Δ= b²-4ac Δ= 4² - 4·1·4 Δ= 16 - 16 Δ=0 Jest jedno miejsce zerowe Mo = [latex] frac{-b}{2a} [/latex] Mo = [latex] frac{4}{2} = 2[/latex] x=2 b)2x²-18=0 2x²=18 x²=9 x=3 lub x= -3 c) -2x² -7x+4 ≤0 Δ=49+32 Δ=81 [latex] x_{1} [/latex] = [latex] frac{7-9}{-4} = frac{-2}{-4} = frac{1}{2} [/latex] [latex] x_{2} = frac{7+9}{-4} = frac{16}{-4} =-4[/latex] d)[latex] x^{2} [/latex] + x -8 >0 Δ=1² - 4×1×(-8) Δ=1+32 Δ=33 [latex] x_{1} = frac{-1- sqrt{33} }{2} [/latex] [latex] x_{2}= frac{-1+ sqrt{33} }{2} [/latex]
a) x² - 4x + 4 = 0 (x - 2)² = 0 x - 2 = 0 x = 2 b) 2x² - 18 = 0 /:2 x² - 9 = 0 (x + 3)(x - 3) = 0 x+3 = 0 v x-3 = 0 x = -3 v x = 3 x ∈ {-3;3} c) -2x² - 7x + 4 ≤ 0 M. zerowe: -2x² + x - 8x + 4 = 0 -x(2x - x) - 4(2x - 1) = 0 (2x - x)(x+4) = 0 2x-x = 0 v x+4 = 0 x = 1/2 v x = -4 a < 0, ramiona paraboli skierowane do dołu x ∈ <-4; 1/2> c) x² + x > 8 x² + x - 8 > 0 M. zerowe: Δ = 1² - 4·1·(-8) = 1 + 32 = 33 √Δ = 33 x₁ = (-1-√33)/2 x₂ = (-1+√33)/2 a > 0, ramiona paraboli skierowane do góry x ∈ (-∞; (-1-√33)/2)) ∪ ((-1+√33)/2; +∞)