rozwiaz rownanie wielomianowe prosze o pelne rozwiazanie z wytlumaczeniem (16-x2)(8x3+1)(x2+2x+6)=0
rozwiaz rownanie wielomianowe prosze o pelne rozwiazanie z wytlumaczeniem
(16-x2)(8x3+1)(x2+2x+6)=0
istnieja 3 przypadki dla ktorych to rownanie przyjmnie wartosc 0 16-x^2=0 V 8x^3+1=0 V x^2+2x+6=0 V- oznacza lub (kwantyfikator ogólny) 1) 16-x^2=0 (4-x)(4+x)=0 więc z 1 wynika że x1=4 x2=-4; 2) 8x^3+1=0 prznosze 1 na prawo i dziele przez 8 x^3=-1/8 - pierwiastkuje pierwsiatkiem 3ciego stopnia ( x^2 nie mozna by bylo pierwiastkowac ). x=pierwiastek3gostopniaz(-1/8) x3=-1/2 3) trzeci przypadek: x^2+2x+6=0 delta=b^2-4ac delta=4-24=-20 delta<0 - brak miejsc zerowych ODP: x1=4 x2=-4 x3=-1/2