1) Wyznacz dziedzinę funkcji y=log(-x+3) 2) Rozwiąż równanie ( xR; x można ewentualnie wyrazić przez logarytmy pewnych liczb):     3^2x + 3^x = 2

1) Wyznacz dziedzinę funkcji y=log(-x+3) 2) Rozwiąż równanie ( xR; x można ewentualnie wyrazić przez logarytmy pewnych liczb):     3^2x + 3^x = 2
Odpowiedź

1) Wyznacz dziedzinę funkcji y=log(-x+3) -x+3>0 x<3 D: x∈(3,∞) 2) Rozwiąż równanie ( x∈R; x można ewentualnie wyrazić przez logarytmy pewnych liczb):     3^2x + 3^x = 2 pomocnicza niewiadoma u=3^x  u²=3^(2x) u²+u=2 u²+u-2=0 Δ=1+8=9 √Δ=3 u1=(-1-3)/2=-2 u2=(-1+3)/2=2 3^x=-2  nie mozliwe bo 3^x>0 3^x=2 ODP [latex]x=log_32[/latex] pozdr Hans

Dodaj swoją odpowiedź