[latex]\L=sin alpha +sin alpha cdot tg^2 alpha = wylaczam pred nawias sin alpha \ \i podstawiam za tg^2 alpha = frac{sin^2 alpha }{cos^2alpha } \ \sin alpha (1+ frac{sin^2 alpha }{cos^2 alpha } )=sin alpha cdot dfrac{cos^2 alpha +sin^2 alpha }{cos^2 alpha }= \ \sin alpha cdot dfrac{1}{cos^2 alpha } = dfrac{sin alpha }{cos alpha } cdot dfrac{1}{cos alpha } = dfrac{tg alpha }{cos alpha } \ \L=P[/latex] Jezeli α nalezy do II cwiartki ukladu wspolrzednych, to cosα<0 i tgα<0., ale cos²α>0 i tgα/cosα > 0.
Korzystamy ze wzorów: [latex]tgalpha = frac{sinalpha}{cosalpha}\\tg^{2}alpha = frac{sin^{2}alpha}{cos^{2}alpha}\\sin^{2}alpha+cos^{2}alpha = 1[/latex] [latex]L = sinalpha + sinalphacdot tg^{2}alpha=sinalpha(1+tg^{2}alpha)=sinalpha(1+frac{sin^{2}alpha}{cos^{2}alpha})=\\=sinalphacdot(frac{cos^{2}alpha}{cos^{2}alpha}+frac{sin^{2}alpha}{cos^{2}alpha}})=sinalphacdotfrac{sin^{2}alpha+cos^{2}alpha}{cos^{2}alpha}=sinalphacdotfrac{1}{cos^{2}alpha}=\\=frac{sinalpha}{cosalpha}cdotfrac{1}{cosalpha} = tgalphacdotfrac{1}{cosalpha} = frac{tgalpha}{cosalpha}\\P = frac{tgalpha}{cosalpha}\\L = P[/latex] Znaki funkcji trygonometrycznych: w I. ćwiartce wszystkie są dodatnie, w II. tylko sinus, w III. tangens i cotangens, a w IV. cosinus. α ∈ (0°;90°) - wszyskie dodatnie α ∈ (90°;180°) - III ćwiartka, zatem: cos² > 0 i tgα/cosα > 0