Rozwiaż równanie kwadratowe 2x² - x + 10 = 0 Rozwiąż nierwność 7 ≤ - x² + 8

Rozwiaż równanie kwadratowe 2x² - x + 10 = 0 Rozwiąż nierwność 7 ≤ - x² + 8
Odpowiedź

2x² - x + 10 = 0 Δ=b²-4ac Δ=(-1)²-4*2*10 Δ=1-80 Δ=-79  <0  ---> brak pierwiastków ================================ 7 ≤ - x² + 8 x²+7-8≤0 x²-1≤0 (x-1)(x+1)≤0 x=1  lub  x=-1 a>0  ---->  parabola skierowana ramionami w górę Odp. x∈<-1, 1>

2x²-x+10=0 Δ=b²-4ac Δ=-(1)²-4*10*2=1-80=-79 x∈R 7≤-x²+8 -x²+8-7≥0 -x²+1≥0 Δ=4 √Δ=2 x1=-2/-2=1 x2=2/-2=-1 x∈<-1, 1>

Dodaj swoją odpowiedź