hejjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
1. [latex]frac{(-frac{2}{3})(2-6cdot 1frac{1}{3})}{3frac{3}{5}+1,2:frac{3}{5}}=frac{(-frac{2}{3})(2-6cdot frac{4}{3})}{frac{18}{5}+frac{12}{10}cdot frac{5}{3}}=frac{-frac{2}{3})(2-8)}{frac{48}{10}}=frac{4}{frac{48}{10}} = 4cdot frac{10}{48}=frac{10}{12}=frac{5}{6}[/latex] liczba przeciwna [latex]-frac{5}{6}[/latex] 2. [latex]a) 2sqrt{45}-3sqrt{20}+sqrt{80}=6sqrt{5}-6sqrt{5}+4sqrt{5}=4sqrt[5}[/latex] [latex]b) 6sqrt[3]{128}+3sqrt[3]{54}-sqrt[3]{250}=24sqrt[3]{2}+9sqrt[3]{2}-5sqrt[3]{2}=28sqrt[3]{2}[/latex] 3. [latex]a) =frac{(2^3)^{-2}cdot 2^{-4}}{(2^{-frac{1}{2}})^4} = frac{2^{-6}cdot 2^{-4}}{2^{-2}} = 2^{-6+(-4)-(-2)}=2^{-8}[/latex] [latex]b) = frac{(2^{-2})^3 cdot 2(^4)^{-4}}{2^{-7}} = frac{2^{-6}cdot 2^{-16}}{2^{-7}} = 2^{-6+(-16)-(-7)}=2^{-15}[/latex] 4. [latex]frac{60}{1200}cdot 100 = 5\%[/latex] 5. [latex](5sqrt{3}-2sqrt{6})^2=75-20sqrt{18}+24 = 49-60sqrt{2}[/latex] [latex](4sqrt{5}-3)(4sqrt{5}+3) = 80-9=71[/latex] [latex]frac{7}{3sqrt{2}+2} cdot frac{3sqrt{2}-2}{3sqrt{2}-2} = frac{7(3sqrt{2}-2)}{14} = frac{3sqrt{2}-2}{2}[/latex] 6. [latex]-9(2-x)^2-(1-3x)(3x+1) le 11\-36+36x-9x^2-1+9x^2 le 11\36x le 48\x le -frac{48}{36}\x le frac{4}{3}[/latex] [latex]x in (-infty,frac{4}{3}>[/latex] 7. [latex]sqrt{4-2ssqrt{3}}+sqrt{12-6sqrt{3}} = sqrt{(sqrt{3}-1)^2}+sqrt{3-sqrt{3})^2} =sqrt{3}-1+3-sqrt{3}=2[/latex] [latex]L=P[/latex]