zad 1 a₁ = m - 1 a₂ = 1/2m warunek prostopadłości prostych a₁ * a₂ = - 1 (m - 1) * 1/2m = - 1 1/2m² - 1/2m = - 1 m²/2 - 1/2m = - 1 / * 2m m - 1 = - 2m m +2m = 1 3m = 1 m = 1/3 zad 2 a₁ = 7 a₈ = a₁ + 7r = - 49 7 + 7r = - 49 7r = - 49 - 7 =- 56 r = - 56/7 = - 8 zad 3 log₃(x - 3) jest określony dla x - 3 > 0 x - 3 > 0 x > 3 x ∈ (3 , +∞)
zad 1 [latex]y=(m-1)x+2 -- extgreater a_{1}=m-1\ \ y=frac{1}{2m}x-4 -- extgreater a_{2}=frac{1}{2m}\ \ a_{1}*a_{2}=-1\ \ (m-1)*frac{1}{2m}=-1 |*2m, zal. m eq 0\ m-1=-2m\ 3m=1 |:3\ m=frac{1}{3}[/latex] zad 2 [latex]a_{1}=7\ a_{8}=-49\ r=?\ \ a_{n}=a_{1}+(n-1)r\ a_{8}=a_{1}+7r\ -49=7+7r\ 7r=-56 |:7\ r=-8[/latex] zad 3 [latex]log_{3}(x-3)[/latex] Z definicji logarytmu [latex]log_{a}b=c[/latex]: a∈R⁺{1} - a=3 ---> spełnione b∈R⁺ to x-3>0 x-3>0 x>3 Odp. Dla x∈(3, ∞)