y = 4x² - 4x - 3 a = 4, b = -4, c = -3 y = a(x - p)² + q - postać kanoniczna p = -b/2a = ⁴/₈ = ¹/₂ q = f(p) = f(¹/₂) = 4 * (¹/₂)² - 4 * ¹/₂ - 3 = ⁴/₄ - 2 - 3 = 1 - 5= -4 y = 4(x - ¹/₂)² - 4 - postać kanoniczna y = a(x - x₁)(x - x₂) - postać iloczynowa Δ = b² - 4ac = (-4)² - 4 * 4 * (-3) = 16 + 48 = 64 √Δ = 8 x₁ = (-b - √Δ)/2a = (4 - 8)/8 = -0,5 x₂ = (-b + √Δ)/2a = (4 + 8)/8 = 1,5 Postać iloczynowa: y = 4(x + 0,5)(x - 1,5)
y= 4x²-4x-3 a=4 b=-4 c=-3 Δ= b²-4*a*c Δ= (-4)²-4*4*(-3) Δ= 16+ 48 Δ= 64 √Δ=√64=8 x₁=-b-√Δ/2*a x₁=4-8/2*4 x₁=-4/8 x₁=-1/2 x₂=-b+√Δ/2*a x₂=4+8/2*4 x₂=12/8 x₂=3/2 p=-b/2*a p=4/2*4 p=4/8 p=1/2 q=-Δ/4*a q=-64/4*4 q=-64/16 q=-4 Postać kanoniczna: f(x)=a(x-p)²+q f(x)=4(x-1/2)²-4 Postać iloczynowa: f(x)=a(x-x₁)(x-x₂) f(x)=4(x+1/2)(x-3/2)