Wyznacz wartość największą i najmniejszą poniższych funkcji w podanym obok przedziale a) y=[latex] x^{2} [/latex] -6x+5 <2;6> b) y=-[latex] x^{2} [/latex]-2x+3 <0;3>

Wyznacz wartość największą i najmniejszą poniższych funkcji w podanym obok przedziale a) y=[latex] x^{2} [/latex] -6x+5 <2;6> b) y=-[latex] x^{2} [/latex]-2x+3 <0;3>
Odpowiedź

Witaj. a) [latex]f(x)=x^{2}-6x+5\\p=frac{-b}{2a}=frac{6}{2}=3\\xin<2;6>[/latex] Wierzchołek znajduje się w podanym przedziale, zaś ramiona paraboli są skierowane w górę. Zatem w wierzchołku mamy wartość najmniejszą: [latex]f(3)=3^{2}-6cdot3+5=9-18+5=-4[/latex] Wartość największą funkcja przyjmuje dla argumentu najbardziej oddalonego od wierzchołka: [latex]f(6)=6^{2}-6cdot6+5=36-36+5=5[/latex] b) [latex]f(x)=-x^{2}-2x+3\\p=frac{-b}{2a}=frac{2}{-2}=-1\\xin<0;3>[/latex] W tym przedziale nie ma wierzchołka, zaś ramiona paraboli są skierowane w dół. Wartość największą więc funkcja osiąga dla argumentu, który znajduje się najbliżej wierzchołka: [latex]f(0)=-0^{2}-2cdot0+3=3[/latex] Wartość najmniejszą funkcja przyjmuje dla argumentu, który jest najdalej: [latex]f(3)=-3^{2}-2cdot3+3=-9-6+3=-12[/latex]

Dodaj swoją odpowiedź