Rozwiązania w załącznikach
Zadanie 17 [latex]Z: 0 leq alpha leq frac{pi}{2} [/latex] [latex]T: frac{1}{sin (alpha )} - frac{cos( alpha )}{tg( alpha )} = sin( alpha )[/latex] [latex]D: frac{1}{sin (alpha )} - frac{cos( alpha )}{tg( alpha )} = frac{1}{sin (alpha )} - frac{cos( alpha )}{ frac{sin( alpha )}{cos( alpha )} } = frac{1}{sin (alpha )} - frac{cos^2( alpha )}{ sin( alpha )} = [/latex] [latex]frac{1}{sin (alpha )} - frac{1-sin^2( alpha )}{ sin( alpha )} = frac{1}{sin (alpha )} - frac{1}{ sin( alpha )} + frac{sin^2( alpha )}{ sin( alpha )} = 0 + sin( alpha ) = sin( alpha )[/latex] Zadanie 16 Współczynnik kierunkowy c wynosi w podejściu różniczkowym [latex]tg( alpha ) = c[/latex] Natomiast w podejściu geometrycznym [latex]c = frac{y_2 - y_1}{x_2 - x_1} = frac{2a -2}{a+1}[/latex] [latex]frac{2a -2}{a+1} = tg( alpha )[/latex] [latex]tg( alpha ) = tg(135) = -1[/latex] [latex]frac{2a -2}{a+1} = -1[/latex] [latex]2a -2= -a-1[/latex] [latex]3a = 1[/latex] [latex]a = frac{1}{3} [/latex]