Wady i zalety energetyki jądrowej

Energetyka:
Energetyka jest to nauka techniczna zajmująca się zagadnieniami przetwarzania, przesyłania, gromadzenia i wykorzystywania różnych rodzajów energii. W zależności od rodzaju energii można wyróżnić: energetykę cieplną (termoenergetyka), energetykę wodną (hydroenergetyka), elektroenergetykę, energetykę jądrową, energetykę wiatrową (aeroenergetyka).

Energetyka jądrowa:
Energetyka jądrowa jest to jedna z kilku rodzajów energii. Wyjaśniana często jako zespół zagadnień związanych z uzyskiwaniem na skalę przemysłową energii z rozszczepienia ciężkich jąder pierwiastków (głównie uranu 235). Energię tę pozyskuje się w elektrowniach jądrowych (reaktor jądrowy*), w reaktorach służących do napędu okrętów, w zasilaczach izotopowych itd.

Uran, jak już wcześniej wspomniałam jest jednym z pierwiastków z rozszczepienia którego można uzyskać energię jądrową. Jest to pierwiastek chemiczny należący do grupy III B (szereg aktynowców) w układzie okresowym, jego liczba atomowa jest najwyższa wśród pierwiastków występujących w przyrodzie (92), masa atomowa wynosi 238,0.
Związki uranu są trujące. W temperaturze pokojowej roztwarza się w kwasie solnym. Na gorąco reaguje z tlenem (U3O8), wodorem (UH3), fluorem (UF6, bezbarwne kryształy, łatwo sublimuje, stosowany do rozdziału izotopów uranu), parą wodną, kwasem azotowym, fluorowodorem, stopionymi alkaliami, siarką. W wysokich temperaturach wchodzi w reakcję z azotem, węglem, krzemem, borem, chlorem, kwasem siarkowym.
Izotopy uranu : 235U, 233U mogą być użyte jako paliwo jądrowe. Oprócz tego związki uranu stosowane są w przemyśle ceramicznym i szklarskim, fotografice, technologii chemicznej.

Energetyka jądrowa obejmuje nie tylko wytwarzanie energii, ale również zajmuje się problemami związanymi z wydobyciem uranu, przeróbką paliwa jądrowego oraz składowaniem odpadów jądrowych. Pierwsze elektrownie jądrowe pojawiły się w latach pięćdziesiątych, dynamiczny rozwój tej dziedziny rozpoczął się w drugiej połowie lat sześćdziesiątych, w związku z wzrostem kosztów energii uzyskiwanej ze spalania kopalin. Rozwój ten został prawie wstrzymany po katastrofie w Czarnobylu.
Największe kontrowersje wokół energetyki jądrowej związane są z problemem powstawania, transportu i składowania odpadów promieniotwórczych.

Reaktor jądrowy, (reaktor atomowy, stos atomowy), to urządzenie służące do wytwarzania kontrolowanej reakcji łańcuchowej, tj. ciągłego pozyskiwania energii z rozszczepiania jąder atomowych.
Stan kontrolowanej reakcji jądrowej podtrzymującej się samoczynnie na ustalonym poziomie nazywany jest stanem krytycznym. Jeśli intensywność reakcji narasta, to stan jest nadkrytyczny, gdy wygasa, to stan jest podkrytyczny.
Stan krytyczny uzyskuje się, gdy efektywny współczynnik mnożenia neutronów κ = 1, tzn. gdy strumień neutronów pochodzących z rozszczepienia jąder atomowych kompensuje straty neutronów wynikające z ich rozproszenia i pochłonięcia. Odchylenie stanu reaktora jądrowego od stanu krytycznego opisuje tzw. reaktywność ρ = (κ-1)/κ.

Reaktor jest sterowalny i bezpieczny, gdy ma małą, dodatnią reaktywność związaną z neutronami opóźnionymi. Typowy reaktor jądrowy zbudowany jest z rdzenia, reflektora neutronów oraz osłon biologicznych. Sam rdzeń zawiera pręty paliwowe, pręty regulacyjne, pręty bezpieczeństwa, moderator, kanały chłodzenia i kanały badawcze.
Podstawowym elementem reaktora jądrowego są pręty paliwowe, które zawierają paliwo jądrowe w formie fizykochemicznej i o stopniu wzbogacenia dostosowanym do konstrukcji reaktora jądrowego. Moderator wykonany jest z materiałów zawierających duże ilości atomów o małej liczbie porządkowej Z, skutecznie zmniejszających energię neutronów produkowanych w trakcie rozszczepiania.

Pręty regulujące i pręty bezpieczeństwa zbudowane są z substancji pochłaniających neutrony (np. bor, kadm), przy czym pręty regulacyjne służą do precyzyjnej zmiany strumienia neutronów, podczas gdy pręty bezpieczeństwa mają za zadanie całkowite przerwanie reakcji łańcuchowej w sytuacji awaryjnej - oba te rodzaje prętów wsuwa się i wysuwa z rdzenia w miarę potrzeby.
Przez kanały chłodzące przepompowuje się chłodziwo tzw. pierwszego obiegu (typowym chłodziwem jest woda, stosuje się również powietrze, azot, ciekły sód itd.). Kanały badawcze służą do kontrolowania poziomu strumienia neutronów, wykonywania naświetlań itp.

Ze względu na zastosowanie rozróżnia się:
1) reaktory jądrowe badawcze (o małej, tzw. zerowej mocy, wykorzystywane w badaniach naukowych jako silne źródła neutronów),
2) reaktory jądrowe produkcyjne (służące do wytwarzania sztucznych pierwiastków promieniotwórczych na drodze aktywacji, głównie do produkcji plutonu - szczególną klasę tych reaktorów stanowią tzw. reaktory jądrowe powielające, w których paliwo jądrowe w trakcie wypalania przekształca się w inny rodzaj paliwa jądrowego),
3) reaktory jądrowe energetyczne (wytwarzające energię cieplną przekształcaną w energię mechaniczną w napędach nuklearnych okrętów lub w energię elektryczną w energetyce jądrowej),
4) reaktory jądrowe doświadczalne (prototypy nowych rozwiązań technicznych stosowanych w reaktorach jądrowych).
Częstym kryterium klasyfikacji reaktorów jądrowych jest rodzaj zastosowanego moderatora i chłodziwa - istnieją zatem reaktory jądrowe wodno-wodne, ciężkowodno-wodne (ciężka woda), grafitowo-wodne, grafitowo-powietrzne, grafitowo-sodowe itp.
Innym rodzajem klasyfikacji reaktorów jądrowych jest podział ze względu na wykorzystywaną energię neutronów lub wielkość ich strumienia (cechy te określają rodzaj paliwa i wiele innych parametrów reaktora).

Zgodnie z tym kryterium rozróżnia się:
1) reaktory jądrowe wysokostrumieniowe (o strumieniu neutronów przekraczającym 1014 cząstek/cm2s),
2) reaktory jądrowe prędkie (gdy reakcja rozszczepienia zachodzi dzięki neutronom prędkim),
3) reaktory jądrowe pośrednie (gdy stosuje się neutrony pośrednie),
4) reaktory jądrowe termiczne (wykorzystywane są neutrony termiczne),
5) reaktory jądrowe epitermiczne (reakcja zachodzi dzięki neutronom epitermicznym).
Pierwszy reaktor jądrowy zbudowano w ramach Manhattan Project (CP-1, E. Fermi), obecnie na świecie eksploatowanych jest ich kilka tysięcy, w większości są one reaktorami badawczymi. W Polsce istnieje jeden badawczy reaktor jądrowy w Świerku (Maria). W poprzednich latach istniały jeszcze dwa reaktory (Ewa i Agata), obecnie są one zlikwidowane.

Opis: Elementy konstrukcyjne reaktora jądrowego: 1 - osłona biologiczna, 2 - osłona ciśnieniowa, 3 - reflektor neutronów, 4 - pręty bezpieczeństwa, 5 - pręty sterujące, 6 - moderator, 7 - pręty paliwowe, 8 - chłodziwo.

Odpady promieniotwórcze są to niewykorzystywane substancje promieniotwórcze. Powstają przy wydobywaniu i oczyszczaniu rud uranowych, wytwarzaniu ładunków jądrowych i paliwa jądrowego oraz jego późniejszej przeróbce, przy wytwarzaniu i oczyszczaniu preparatów zawierających izotopy promieniotwórcze (do różnych zastosowań) itp. To właśnie one i problemy związane z ich składowaniem stanowią przeszkodę w wytwarzaniu energii jądrowej.

Odpady promieniotwórcze dzieli się na klasy ze względu na stan skupienia i formę chemiczną, aktywność (aktywność źródła promieniotwórczego) i radiotoksyczność zawartych w nich izotopów promieniotwórczych. Podstawowym rozróżnieniem odpadów promieniotwórczych jest podział na nisko- lub wysokoaktywne.

Odpady wysokoaktywne zazwyczaj przechowuje się w miejscu wytworzenia przez okres rzędu lat (potrzebny do rozpadu większości względnie krótkożyciowych izotopów promieniotwórczych zawartych w odpadach promieniotwórczych) w szczelnych opakowaniach zanurzonych w basenach wodnych (woda odbiera ciepło pochodzące z rozpadów promieniotwórczych), po czym poddawane są przetworzeniu, w wyniku którego zazwyczaj dąży się do zmniejszenia objętości odpadów promieniotwórczych zawierającego bardzo długożyciowe izotopy.

Jedną z metod postępowania z niskoaktywnymi odpadami promieniotwórczymi jest zaś zwiększanie ich objętości poprzez rozcieńczenie nieaktywnymi substancjami, przez co powstaje mieszanina o aktywności właściwej porównywalnej z aktywnością elementów naturalnego środowiska, którą można wprowadzić do środowiska.

Zazwyczaj jednak odpady promieniotwórcze, niskoaktywne, umieszczone w szczelnych pojemnikach, składuje się na zamkniętych składowiskach odpadów (w Polsce składowisko takie znajduje sie w Różanie). Ostatecznym miejscem przechowywania najbardziej długożyciowych odpadów promieniotwórczych są tzw. składowiska docelowe, lokalizowane na terenach asejsmicznych, na dużych głębokościach w skałach, przez które nie penetruje woda.

Obliczany czas nienaruszonego przechowywania odpadów promieniotwórczych w takich składowiskach sięga milionów lat, składowiska takie są bardzo drogie. Problemy związane z gospodarką odpadami promieniotwórczymi są głównym ograniczeniem rozwoju energetyki jądrowej.

Paliwo jądrowe, materiał rozszczepialny wykorzystywany do uzyskiwania energii w reaktorach jądrowych. Zawiera najczęściej wzbogacony uran (tj. uran charakteryzujący się większą od naturalnej względną zawartością izotopu 235U, mieszczącą się w granicach od kilku do 90%), w różnych formach fizyko-chemicznych: jako ciało stałe (tlenek, węglik, stop metaliczny, metal; w postaci prętów, pastylek itp.), w postaci ciekłej (jako roztwór siarczanu lub azotanu uranylu) lub jako gaz (sześciofluorek uranu). Drugim materiałem wykorzystywanym jako paliwo jądrowe jest izotop plutonu 239Pu.

Szczegółowy rodzaj paliwa dopasowany jest do danego typu reaktora. W czasie umieszczenia paliwa jądrowego w reaktorze wzrasta w nim ilość produktów rozszczepienia i aktywacji, aż do poziomu wymuszającego wymianę danej porcji paliwa jądrowego.

Paliwo jądrowe wydobyte z reaktora nazywa się wypalonym (jest to najbardziej radioaktywna postać paliwa jądrowego), po pewnym czasie poddaje się je procesowi oczyszczenia w celu ponownego wykorzystania (odpady promieniotwórcze).

Wraz z rozwojem techniki reaktorów jądrowych nastąpił rozwój radiochemii ( tuż po II wojnie światowej ), czyli nauki z pogranicza chemii i fizyki jądrowej. Zajmuje się ona badaniem fizykochemicznych i chemicznych własności izotopów promieniotwórczych, metodami analiz, wydzielania i oczyszczania śladowych ilości substancji promieniotwórczych, metodami znaczników izotopowych, wytwarzaniem i oczyszczaniem pierwiastków transuranowych itd.

W ramach podsumowania mojej pracy chciałabym wyciągnąć wnioski co do zalet i wad związanych z wytwarzaniem energii jądrowej:

WADY:
- Brak miejsca na składowanie odpadów promieniotwórczych, szkodliwych dla zdrowia ludzi i zwierząt oraz dla środowiska naturalnego znajdującego się wokół nas;
- Wytwarzanie uranu związane jest również z procesami uszkadzającymi naturalną „powłokę” środowiska;
- Są ludzie którzy wykorzystują energię jądrową w sposób niekontrolowany, np. przy pomocy broni jądrowej. Broń jądrowa to jeden z rodzajów broni masowej zagłady o działaniu wybuchowym o wielkiej sile;
- Związane z elektrowniami jądrowymi wybuchy, np. wybuch elektrowni w Czarnobylu, który spowodował wielkie straty oraz był przyczyną mutacji genetycznych rodzących się w tym okresie dzieci;

ZALETY:
- W porównaniu do innych nienaturalnych sposobów wytwarzania energii powoduje stosunkowo niewielkie szkody w środowisku naturalnym;
- Tańszy niż inne, sposób wytwarzania energii;
- Umiejętnie wykorzystywana energia powoduje wiele dobrego;

Przede wszystkim chciałabym dodać, że wszystkie zawarte w mojej pracy informacje mogą zaświadczyć o dobrych, jak i o złych stronach energetyki jądrowej. Wytwarzanie energii jądrowej nie jest bardzo kosztowne, ale dosyć szkodliwe oraz niesie za sobą pewne ryzyko. Niedobrze wykorzystana energia może spowodować więcej szkód niż dobrego.

Korzystałam z:
- Encyklopedii PWN,
- Internetowej encyklopedii Fogra,

Dodaj swoją odpowiedź
Biologia

Wady i zalety energetyki jądrowej ? Trzeba przedstawić w formie punktów

Wady i zalety energetyki jądrowej ? Trzeba przedstawić w formie punktów...

Fizyka

Wady i zalety energetyki jądrowej ? Trzeba przedstawić w formie punktów

Wady i zalety energetyki jądrowej ? Trzeba przedstawić w formie punktów...

Fizyka

wady i zalety energetyki jądrowej

wady i zalety energetyki jądrowej...

Fizyka

wady i zalety energetyki jądrowej

wady i zalety energetyki jądrowej...

Fizyka

wady i zalety energetyki jądrowej i czy jesteś za czy przeciw ich budowy :D 

wady i zalety energetyki jądrowej i czy jesteś za czy przeciw ich budowy :D ...

Chemia

Poproszę wady i zalety energetyki jądrowej na dzisiaj ? :*

Poproszę wady i zalety energetyki jądrowej na dzisiaj ? :*...