[latex](x-a)^2+(y-b)^2=r^2[/latex]
Wstawiamy punkty do wzoru
[latex](6-a)^2+(-1-b)^2=r^2[/latex]
[latex](2-a)^2+(-9-b)^2=r^2[/latex]
[latex](2-a)^2+(-1-b)^2=r^2[/latex]
Stąd mamy
[latex](6-a)^2+(-1-b)^2=(2-a)^2+(-9-b)^2[/latex]
[latex](6-a)^2+(-1-b)^2=(2-a)^2+(-1-b)^2[/latex]
czyli
[latex]36-12a+a^2+1+2b+b^2=4-4a+a^2+81+18b+b^2 [/latex]
[latex]36-12a+a^2+1+2b+b^2=4-4a+a^2+1+2b+b^2[/latex]
Zatem
[latex] left { {{-8a-16b=48} atop {-8a=-32}}
ight. = extgreater a= 4 [/latex]
[latex]-32-16b=48= extgreater -16b=80= extgreater b=-5[/latex]
Czyli środek S(4,-5)
r^2=(6-4)^2+(-1-(-5))^2
r^2=2^2 + 4^2
r^2=4+16
r^2=20
r=2 pierwiastki z 5
Równanie ogólne: (x-4)^2+(y+5)^2=20
Równanie kanoniczne: x^2-8x+16+y^2+10y+25=20, czyli x^2-8x+y^2+10y+21=0