e) f(x)= I 7x-3,5/1-4x do potęgi 2I D: 1-4x do potęgi 2=0 -4x do potęgi 2= -1 /: (-4) x do potęgi 2= 1/4 x= pierwiastek z 1/4= 1/2=0,5 Obliczam miejsca zerowe: 7x-3,5=0 7x=3,5 /: 7 x=0,5 1-4x do potęgi 2=0 -4x do potęgi 2= -1 /: (-4) x do potęgi 2= 1/4 x= pierwiastek z 1/4= 1/2=0,5 w tym przykładzie nie ma miejsc zerowych ;)
f(x)=x2+100xx2−100f(x)=x2+100xx2−100 dziedzina: |x2−100x|=|x(x−100)|≠0|x2−100x|=|x(x−100)|≠0 a wiec x≠0x≠0 oraz x≠100x≠100 f(x)=0⇔x2+100x=0f(x)=0⇔x2+100x=0 zatem x(x+100)=0x(x+100)=0 a więc x=0∉D ∧ x=−100