1) Oblicz : a) 5a(4a-8)= b) (3x-2) • (x-2) = c) (x+y)2 (<--- do potęgi drugiej) = d) (a-b)2= (do potęgi drugiej) 2) Dany jest czworokąt, który ma dokładnie 2 kąty proste. Uzasadnij , że jeden z pozostałych kątów tego czworokąta jest ostry. POTRZEB

1) Oblicz : a) 5a(4a-8)= b) (3x-2) • (x-2) = c) (x+y)2 (<--- do potęgi drugiej) = d) (a-b)2= (do potęgi drugiej) 2) Dany jest czworokąt, który ma dokładnie 2 kąty proste. Uzasadnij , że jeden z pozostałych kątów tego czworokąta jest ostry. POTRZEBUJĘ NA JUTRO!! Z góry dzięki :D
Odpowiedź

zad 1 a) 5a(4a-8) = 20a²-40a b) (3x-2)(x-2) = 3x²-6x-2x+4 = 3x²-8x+4 c) (x+y)² = x²+2xy+y² d) (a-b)² = a²-2ab+b² zad 2 Skorzystajmy z faktu, że suma kątów każdego czworokąta wynosi 360°. Wiemy, że dokładnie dwa kąty są proste, a więc wynoszą po 90°. 360°-(2·90°) = 180°. A więc suma dwóch pozostałych kątów wynosi 180°. Wiemy, że są DOKŁADNIE dwa kąty proste, a więc żaden kolejny nie może już wynosić 90°. Jeden z pozostałych kątów musi mieścić się w przedziale (0°,90°), a drugi (90°,180°). Można to zapisać równaniem: x+y = 180°, gdzie x≠90° ∧ y≠90°  (np. 30° i 150°), gdzie x i y to pozostałe dwa kąty. Zatem jeden z kątów musi być ostry.

Dodaj swoją odpowiedź