1. kwadratową tekturę o obwodzie 64 dzielimy na 4 boki= 16. bok kwadratu ma 16. a) koło wycinamy że środka kwadratu, czyli promień = 1/2 boku = 8 obwód koła= 2piR 2*3.14*8=50.24 to jest maxymalny obwód koła jakie nieznane wyciąć, tak da się. sposób 2: 2piR=48 2*3.14*r=48 6.28r=48 r=48/6.28=7.643 żeby obwód był 48 promień musi być 7.643 a mu możemy zrobić maxymalnie 8. czyli "zmieści się" tak da się. b) 4 koła o obwodzie 25. 2piR=25 2*3.14r=25 6.28r=25 /:6,28 r=25/6.28=3.981 skoro bok ma 16, to 2 koła mają promienie maxymalnie 16:4=4 my potrzebujeny żeby promień był 3.981 tak, da się wyciąć r identyczne koła o obwodzie 25 2. a) pień Drzewa ma średnicę 1.5m, czyli promień to 1/2średnicy r=0.75m obwód drzewa: 2piR=2*3.14*0.75=4.71 m 4.71:1.4=3.364 czyli wychodzi że 3.3 osoby, ale nie można mieć kawałka osoby, więc potrzebne są 4. b) r=1.55 2piR=2*3.14*1.55=9.734 9.734:1.4=6.953 czyli 7 osób 3. r=4.5 2piR=2*3.14*4.5=28.26 28.26:3=9.42 10 kawałków.
Pomocy ! Proszę o rozwiązanie i wytłumaczenie zadań.
1. Czy z kwadratowego kawałka tektury o obwodzie 64cm można wyciąć :
a) koło, którego obwód będzie równy 48cm,
b) cztery koła o równych promieniach tak, by obwód każdego z kół wynosi 25cm?
Do obliczeń przyjmij (pi) = 3,14.
2. Ile osób o rozpiętości ramion równej 140cm potrzeba, by objąć pień :
a) drzewa o średnicy 1,5m ,
b) dębu Bartek, którego średnica to około 3,1m?
3. Mamy do dyspozycji drewniane płotki ogrodowe, którymi można otaczać dowolne kształty, każdy o długości 3m. Ile takich fragmentów potrzebujemy do ogrodzenia trawnika w kształcie koła o promieniu 4,5m?
Odpowiedź
Dodaj swoją odpowiedź