Podaj wzór ogólny ciągu geometrycznego ( [latex] a_{n} [/latex] ), w którym [latex]a_{2} = 36[/latex] i [latex]a_{5} = 1 frac{1}{3} [/latex] .

Podaj wzór ogólny ciągu geometrycznego ( [latex] a_{n} [/latex] ), w którym [latex]a_{2} = 36[/latex] i [latex]a_{5} = 1 frac{1}{3} [/latex] .
Odpowiedź

[latex] a_{n} = a_{1} * q^{n-1} [/latex] [latex] a_{2} = a_{1} * q = 36 [/latex] [latex] a_{5} = a_{1} * q^{4} = a_{2} * q^{3} = 1 frac{1}{3} = frac{4}{3}[/latex] [latex] 36 * q^{3} = frac{4}{3} |*frac{3}{4} [/latex] [latex] 27 * q^{3} = 1 |*frac{1}{27}[/latex] [latex] q^{3} = frac{1}{27} [/latex] [latex] q = frac{1}{3} [/latex] [latex] a_{1} * q = 36 [/latex] [latex] a_{1} * frac{1}{3} = 36 |*3[/latex] [latex] a_{1} = 108 [/latex] [latex] a_{n} = a_{1} * q^{n-1} [/latex] [latex] a_{n} = 108 * (frac{1}{3})^{n-1} [/latex] [latex] a_{n} = 108 * frac{(frac{1}{3})^{n}}{frac{1}{3}} [/latex] [latex] a_{n} = 108 * (frac{1}{3})^{n} * 3 [/latex] [latex] a_{n} = 324 * (frac{1}{3})^{n} [/latex]

Dodaj swoją odpowiedź