Zad. 1 (rys. 1) Oblicz osiowy moment bezwładności przekroju względem osi x przechodzącej przez środek ciężkości przekroju. Zad. 2 (rys. 2) Oblicz osiowy moment bezwładności pola dwóch spawanych ze sobą kątowników równoramiennych 65X65X10 mm względem o

Zad. 1 (rys. 1) Oblicz osiowy moment bezwładności przekroju względem osi x przechodzącej przez środek ciężkości przekroju. Zad. 2 (rys. 2) Oblicz osiowy moment bezwładności pola dwóch spawanych ze sobą kątowników równoramiennych 65X65X10 mm względem osi x i y przechodzących przez środek ciężkości. Daję naj.
Odpowiedź

1. położenie środka ciężkości xc=ΣAixi/ΣA; A-powierzchnia oś X - podstawa  prostokąta I xc= (150*40*20+2*35*160*-80)/(150*40+2*35*160)=-45,1163 mm moment bezwładności prostokąta względem osi Jxo=bh^3/3 wzór Steinera Jx=Jxo+Ax^2 x-odległość od osi x prostokąt I (podstawienia w cm) Jxo= 15,0*4,0^3/3=320 cm^4   Ax^2= 15*4*4,512^2=1 221,4886 Jx1= 320+1221,5=1541,5 cm^4 prostokąt II i III Jxo= 3,5*16^3/3=4778,6667 cm^4 Ax^2= 3,5*16*4,512^2=1140,0561   Jx2= 4778,6667-1140,0561=3638,6106 cm^4 moment bezwładności przekroju Jxp=Jx1+2Jx2= 1541,5+2*3638,6106=8818,7212 cm^4 2. kątownik 65x65x10 moment bezwładności względem podstawy wg wzoru bh^3/3 połka pionowa b=1 cm; h=6,5 cm półka pozioma b=5,5 cm; h=1 cm środek ciężkości odległość od podstawy xc= (1*6,5*6,5/2+1*5,5*0,5)/(1*6,5+1*5,5)=1,9896 cm Jx=2(Jxo-Axc^2) Jxo= 1*6,5^3/3+5,5*1^3/3=93,375 cm^4 A= 1*6,5+1*5,5=12 cm^2 Jx= 2*(93,375-12*1,9896^2)=91,7458 cm^4 moment względem osi Y Jxo=Jyo Jy=2Jyo= 2*93,375=186,75  cm^4

Dodaj swoją odpowiedź