Wykaż, że liczba: [latex]p=(log_{5}2+log_{2}625+4)(log_{5}2-2log_{50}2)cdot log_{2}5-log_{5}2[/latex] jest całkowita

Wykaż, że liczba: [latex]p=(log_{5}2+log_{2}625+4)(log_{5}2-2log_{50}2)cdot log_{2}5-log_{5}2[/latex] jest całkowita
Odpowiedź

[latex]p=(log_{5}2+log_{2}625+4)(log_{5}2-2log_{50}2)cdot log_{2}5-log_{5}2[/latex] [latex]p=left(frac{1}{log_25} +log_{2}5^4+4 ight)left( frac{1}{log_25} -2 cdot frac{1}{log_250} ight) cdot log_{2}5-log_{5}2[/latex] [latex]p=left(frac{1}{log_25} +4log_{2}5+4 ight)cdot log_{2}5left( frac{1}{log_25} - frac{2}{log_250} ight) -log_{5}2[/latex] [latex]p=left(1+4log^2_{2}5+4log_{2}5 ight)left( frac{log_250}{log_25 cdot log_250 }- frac{2log_25}{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=left(4log^2_{2}5+4log_{2}5+1 ight)left(frac{log_250- 2log_25}{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=left(2log_{2}5+1 ight)^2left(frac{log_250- log_25^2}{log_25 cdot log_250} ight)-log_{5}2[/latex] [latex]p=left(log_{2}5^2+log_22 ight)^2left(frac{log_2 frac{50}{25} }{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=left(log_{2}25+log_22 ight)^2left(frac{log_22}{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=left(log_{2}(25 cdot 2) ight)^2left(frac{1}{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=left(log_{2}50 ight)^2left(frac{1}{log_25 cdot log_250} ight) -log_{5}2[/latex] [latex]p=frac{log_{2}50}{log_25} -log_{5}2[/latex] [latex]p=frac{log_{2}(5^2 cdot 2)}{log_25} -log_{5}2[/latex] [latex]p=frac{log_{2}5^2 +log_2 2}{log_25} -log_{5}2[/latex] [latex]p=frac{2log_{2}5 +1}{log_25}-log_{5}2[/latex] [latex]p=frac{2log_{2}5 }{log_25}+frac{1}{log_25}-log_{5}2[/latex] [latex]p=2+log_52-log_52[/latex] [latex]p=2[/latex]

Dodaj swoją odpowiedź