Zanieczyszczenia powietrza

ZANIECZYSZCZENIA POWIETRZA
Rodzaje zanieczyszczeń powietrza i ich źródła
Zanieczyszczenia powietrza stanowią gazy, ciecze i ciała stałe obecne w powietrzu, ale nie będące jego naturalnymi składnikami, lub też substancje występujące w ilościach wyraźnie zwiększonych w porównaniu z naturalnym składem powietrza.

Do zanieczyszczeń powietrza należą:

1) gazy i pary związków chemicznych, np. tlenki węgla (CO i CO2), siarki (SO2 i SO3) i azotu, amoniak (NH3), fluor, węglowodory (łańcuchowe i aromatyczne), a także ich chlorowe pochodne, fenole;
2) cząstki stałe nieorganiczne i organiczne (pyły), np. popiół lotny, sadza, pyły z produkcji cementu, pyły metalurgiczne, związki ołowiu, miedzi, chromu, kadmu i innych metali ciężkich;
3) mikroorganizmy - wirusy, bakterie i grzyby, których rodzaj lub ilość odbiega od składu naturalnej mikroflory powietrza;
4) kropelki cieczy, np. kwasów, zasad, rozpuszczalników.
Wartość emisji zanieczyszczeń to ilość zanieczyszczeń wydalana do atmosfery w jednostce czasu, wyrażana w g/s, kg/h lub t/rok.

CHARAKTERYSTYKA POSZCZEGÓLNYCH ZWIĄZKÓW CHEMICZNYCH

Związki siarki. Zanieczyszczenie atmosfery powodują gazowe związki siarki - SO2, SO3,
H2S, kwas siarkowy H2SO4 i siarczany różnych metali.
Dwutlenek siarki (SO2) jest bezbarwnym, silnie toksycznym gazem o duszącym zapachu. Wolno rozprzestrzenia się w atmosferze ze względu na duży ciężar właściwy (2,93 kg/m3, gęstość względna 2,26). Powstaje m. in. w wyniku spalania zanieczyszczonych siarką paliw stałych i płynnych (np. węgla, ropy naftowej) w silnikach spalinowych, w elektrociepłowniach, elektrowniach cieplnych. Największy udział w emisji SO2 ma przemysł paliwowo-energetyczny. Opalana węglem elektrownia o mocy 1000 MW emituje do atmosfery w ciągu roku 140 000 ton siarki, głównie w postaci SO2. Dwutlenek siarki utrzymuje się w powietrzu przez 2-4 dni i w tym czasie może się przemieścić na bardzo duże odległości. W powietrzu SO2, utlenia się do SO3, a ten z kolei łatwo reaguje z wodą ( z parą wodną zawartą w powietrzu) tworząc kwas siarkowy - H2SO4, jeden ze składników kwaśnych deszczów.
SO2 + 1/2 O2 => SO3 +H2O+ H2SO4
Związki azotu. W atmosferze występuje wiele związków azotu: tlenek azotu (NO), dwutlenek azotu (NO2), podtlenek azotu (N2O), nadtlenek azotu (NO3), trójtlenek azotu (N2O3, pięciotlenek azotu (N2O5), amoniak (NH3) oraz kwasy: azotawy (HNO2 i azotowy (HNO3). Wiele z nich, głównie tlenki azotu, to naturalne składniki atmosfery, tworzące się w efekcie np. wybuchów wulkanów. W niewielkich ilościach nie są substancjami toksycznymi, jednak ich nadmiar powstający podczas procesów produkcyjnych (obróbka wysokotermiczna, komory paleniskowe elektrowni) oraz w silnikach spalinowych powoduje, że stają się one niebezpiecznymi zanieczyszczeniami atmosfery. W szczególności groźne są bezbarwny i bezwonny tlenek azotu oraz brunatny o duszącej woni dwutlenek azotu. Mogą się one kolejno utleniać do pięciotlenku azotu, który w obecności pary wodnej tworzy kwas azotowy - HNO3, jeden ze składników kwaśnych deszczów.
Tlenek węgla powstaje w wyniku niezupełnego spalania węgla lub jego związków.
Głównym źródłem tego gazu są:
- spaliny z silników pojazdów mechanicznych, w szczególności benzynowych (70-80% ogólnej emisji CO);
- przemysł metalurgiczny, elektromaszynowy i materiałów budowlanych;
- elektrociepłownie, elektrownie cieplne;
- koksownie, gazownie;
- paleniska domowe.
Tlenek węgla jest gazem silnie toksycznym. Ze względu na mały ciężar właściwy (1,25 kG/m3, gęstość względna 0,970) łatwo rozprzestrzenia się w powietrzu atmosferycznym. Jest szczególnie niebezpieczny, ponieważ jest to gaz bez smaku, zapachu, barwy, a więc zmysły ludzkie nie ostrzegają przed nim.
Dwutlenek węgla powstaje podczas wszelkich procesów spalania paliw stałych, ciekłych i gazowych, a także w procesie oddychania organizmów żywych. Dwutlenek węgla w atmosferze nie stanowi bezpośredniej groźby pod warunkiem, że nie nastąpi naruszenie równowagi biologicznej, spowodowane nadmierną jego emisją do atmosfery. Dwutlenek węgla - oprócz roli naturalnej izolacji termicznej - spełnia w przyrodzie również niezwykle ważną rolę jako materiał do budowy substancji organicznej roślin. Jest on podstawowym źródłem węgla pobieranego przez rośliny z powietrza w procesie fotosyntezy.
Wielopierścieniowe węglowodory aromatyczne (WWA) to związki chemiczne zbudowane z węgla i wodoru, zawierające w cząsteczce kilka pierścieni aromatycznych. Węglowodory pojawiają się w powietrzu w wyniku parowania lub spalania paliw, głównie węgla, ropy naftowej i ropopochodnych. Wielopierścieniowe węglowodory aromatyczne powstają także podczas palenia tytoniu. Jednym z bardziej niebezpiecznych węglowodorów jest 3,4-benzopiren, będący substancją kancerogenną.

ŻRÓDŁA ZANIECZYSZCZEŃ POWIETRZA

a) źródła naturalne, do których należą:
- wulkany (ok. 450 czynnych), z których wydobywają się m.in. popioły wulkaniczne i gazy (CO2 , SO2, H2S - siarkowodór i in.);
- pożary lasów, sawann i stepów (emisja CO2, CO i pyłu);
- bagna wydzielające m.in. CH4 (metan), CO2, H2S, NH3;
- gleby i skały ulegające erozji, burze piaskowe (globalnie do 700 mln. t pyłów/rok );
- tereny zielone, z których pochodzą pyłki roślinne.
b) źródła antropogeniczne (powstające w wyniku działalności człowieka) można podzielić na 4 grupy:
- energetyczne - spalanie paliw;
- przemysłowe - procesy technologiczne w zakładach chemicznych, rafineriach, hutach, kopalniach i cementowniach;
- komunikacyjne - głównie transport samochodowy, ale także kołowy, wodny i lotniczy;
- komunalne - gospodarstwa domowe oraz gromadzenie i utylizacja odpadów i ścieków (np. wysypiska, oczyszczalnie ścieków).
Źródła emisji zanieczyszczeń mogą być punktowe (np. komin), liniowe (np. szlak komunikacyjny) i powierzchniowe (np. otwarty zbiornik z lotną substancją).
Zanieczyszczenia powietrza można podzielić na zanieczyszczenia pierwotne, które występują w powietrzu w takiej postaci, w jakiej zostały uwolnione do atmosfery, i zanieczyszczenia wtórne, będące produktami przemian fizycznych i reakcji chemicznych, zachodzących między składnikami atmosfery i jej zanieczyszczeniem (produkty tych reakcji są niekiedy bardziej szkodliwe od zanieczyszczeń pierwotnych) oraz pyłami uniesionymi ponownie do atmosfery po wcześniejszym osadzeniu na powierzchni ziemi.

Skutki zanieczyszczania powietrza

Zanieczyszczenia powietrza wpływają ujemnie na całe środowisko przyrodnicze. Niszczy zasoby przyrody ożywionej i nieożywionej.


Najważniejsze skutki zanieczyszczenia powietrza:
* efekt cieplarniany,
* kwaśne deszcze,
* zmniejszanie warstwy ozonu,
* zmniejszanie zasobów paliw kopalnych,
* zachwianie równowagi ekologicznej między tlenem i dwutlenkiem węgla
* zachwianie równowagi biologicznej ekosystemów,
* pogarszanie jakości żywności,
* zanieczyszczanie gleby i wody.

Efekt cieplarniany:

Ziemia posiada atmosferę o grubości ponad 1000 kilometrów. Atmosfera zawiera masy powietrza, które zatrzymują i magazynują ciepło pochodzące ze słońca pod postacią promieniowania podczerwonego. Podwyższenie temperatury powierzchni Ziemi będące skutkiem zatrzymywania energii słonecznej przez gazy cieplarniane nazywane jest efektem cieplarnianym lub "szklarniowym".


Jak powstaje efekt cieplarniany

Mechanizm powstawania efektu cieplarnianego przedstawiłem na zamieszczonym obok schemacie.
Znaczna część promieniowania słonecznego (promieniowanie krótkofalowe o długości fali od 0,1 do 4 mm) jest przepuszczana przez atmosferę ziemską i pochłaniana przez powierzchnię Ziemi, co powoduje jej ogrzanie. Wskutek ocieplenia powierzchni Ziemi następuje emisja promieniowania podczerwonego (promieniowanie długofalowe o długości fali od 4 do 80 mm). Znaczna część tego promieniowania jest pochłaniana przez znajdujące się w atmosferze cząsteczki wody, dwutlenku węgla i innych gazów oraz przez drobne kropelki wody w chmurach. Energia cieplna jest teraz przekazywana przez atmosferę głównie z powrotem do powierzchni Ziemi w postaci tzw. promieniowania zwrotnego a tylko częściowo w przestrzeń kosmiczną. Promieniowanie zwrotne ogrzewa ponownie powierzchnię Ziemi, dlatego jest podstawową przyczyną występowania na naszej planecie efektu cieplarnianego. Energia oddawana przez naszą planetę jest mniejsza od energii przyjmowanej pochodzącej ze Słońca.
Dzięki ochronie atmosfery przed wychłodzeniem Ziemi średnia temperatura powietrza wynosi ok. +15°C. Gdyby atmosfera nie zawierała gazów cieplarnianych, nagrzana powierzchnia Ziemi wypromieniowywałaby swą energię w przestrzeń kosmiczną, dlatego średnia temperatura powietrza byłaby równa ok. -17°C.
Dopóki człowiek nie zanieczyszczał środowiska w tak znacznym stopniu, jak ma to miejsce obecnie, główną rolę w pochłanianiu ciepła odbitego od powierzchni Ziemi pełniła para wodna. Jednak od kilkudziesięciu już lat na skutek działalności człowieka szybko wzrasta rola pozostałych gazów cieplarnianych.


Czym są gazy cieplarniane

Gazy cieplarniane są lotnymi substancjami chemicznymi występującymi w atmosferze, których budowa fizyko-chemiczna pozwala na zatrzymywanie i magazynowanie energii cieplnej oraz przekazywanie jej do powierzchni Ziemi w postaci promieniowania podczerwonego.
Spośród ponad 30 dotychczas zidentyfikowanych gazów cieplarnianych w poniższej tabeli umieściłem 5 najważniejszych ze względu na udział w efekcie cieplarnianym oraz zdolność do pochłaniania promieniowania podczerwonego w porównaniu do dwutlenku węgla.

Nazwa gazu Udział w efekcie
cieplarnianym Efektywność pochłaniania promieniowania podczerwonego w porównaniu do CO2
dwutlenek węgla(CO2) 50% 1
metan (CH4) 18% 30
freony 14% 10-20000
ozon (O3) 12% 2000
tlenki azotu (NOx) 6% 150


W powstawaniu efektu cieplarnianego najważniejszą rolę odgrywa dwutlenek węgla, którego udział wynosi 50%. Tak wysoki udział CO2 w efekcie cieplarnianym, mimo najmniejszej efektywności pochłaniania promieniowania podczerwonego jest możliwy dzięki jego wysokiej zawartości w atmosferze - ok. 0,03% (zaw. objętościowa). Rola dwutlenku węgla w efekcie cieplarnianym wciąż wzrasta, co jest skutkiem działalności człowieka: emisja CO2 związana z przemysłem, połączona z gwałtownym zmniejszaniem się powierzchni terenów zalesionych. Oblicza się, że globalna emisja CO2 wynosi ok. 1011 t/rok. W obecnym stuleciu stężenie tego gazu wzrosło od ok. 270 ppm na początku XX w. do 360 ppm w latach 80.
Wysoki udział w powstawaniu efektu cieplarnianego ma również metan (CH4) - 18%. Gaz ten powstaje i jest emitowany do atmosfery w wyniku licznych reakcji beztlenowego rozkładu szczątków roślin i zwierząt oraz beztlenowego rozkładu odchodów zwierzęcych. Metan jest głównym składnikiem gazu ziemnego, dlatego też jego znaczne ilości są uwalniane do atmosfery wraz z wydobywanym węglem kamiennym i ropą naftową.
Freony, przeciwieństwie do pozostałych gazów, które umieściłem na powyższym wykresie, nie powstają w sposób naturalny. Powstają one jedynie w wyniku reakcji chemicznych przeprowadzonych przez człowieka (działanie fluorowodorem na halogenopochodne metanu lub etanu w obecności katalizatora - pięciochlorku antymonu) i stosowane są w chłodnictwie oraz (obecnie coraz rzadziej) do produkcji aerozoli. Freony są szczególnie niebezpiecznymi gazami, nie tylko ze względu na bardzo małą aktywność chemiczną, czego skutkiem jest duża trwałość. W porównaniu do dwutlenku węgla freony odznaczają się od 10 do 20000 razy większą efektywnością w pochłanianiu promieniowania podczerwonego. Należy także zauważyć, że freony powodują rozkład ozonu (O3) na tlen (O2), czego skutkiem jest powstanie tzw. dziury ozonowej.
Udział ozonu w powstawaniu efektu cieplarnianego wynosi 12%. Powstaje w sposób naturalny - z tlenu pod wpływem wyładowań atmosferycznych lub promieniowania ultrafioletowego. Ozon występuje w dolnych warstwach atmosfery w małych ilościach (ok. 2 • 10-5 g/dm3). Jego zawartość jest znacznie większa w górnych warstwach atmosfery (w ozonosferze). Chroni tam wszystkie żywe organizmy na Ziemi przed promieniowaniem ultrafioletowym.
Najmniejszą rolę w powstawaniu efektu cieplarnianego spośród gazów wymienionych w powyższej tabeli i zamieszczonych na wykresie odgrywają tlenki azotu - 6%. Do środowiska dostają się głównie wraz ze spalinami samochodów oraz razem z azotowymi nawozami sztucznymi. Najbardziej efektywnym tlenkiem jest N2O (150 razy efektywniejszy od dwutlenku węgla), jednak jego zawartość w atmosferze jest równa ok. 10-6%.
Na skutek działalności człowieka zawartość gazów cieplarnianych w atmosferze systematycznie wzrasta, co prowadzi do pogłębiania się efektu cieplarnianego. Powinniśmy zastanowić się, jakie będą konsekwencje ocieplenia klimatu na Ziemi. Czy może nam grozić katastrofa ekologiczna?

Konsekwencje ocieplenia klimatu na Ziemi

Skutki stopniowego ocieplania klimatu na Ziemi zauważamy już od wielu lat. W wielu miejscach na Ziemi obserwuje się wzrost średniej temperatury powietrza. Ogrzane wody w morzach i oceanach powodują topnienie lodowców na biegunach Ziemi oraz zwiększają swoją objętość, co prowadzi do podniesienia się ich poziomu.
W ciągu najbliższych pięćdziesięciu lat może dojść do zalania wielu obszarów położonych na małej wysokości bezwzględnej (n. p. m.). Obliczono, że w wyniku stopienia lodowców na Grenlandii i Antarktydzie pod wodą może znaleźć się prawie cała Holandia, Dania, znaczna część Belgii i Bangladeszu. Na terenie Polski może zostać zalany obszar położony w odległości nawet do 100 km od wybrzeża Morza Bałtyckiego.
Jednak teoretycznie możliwe jest również zwiększenie się masy lodowców. W wyniku ocieplenia klimatu zwiększy się parowanie wód w morzach i oceanach, co doprowadzi do zwiększenia ilości opadów na Ziemi. W okolicach biegunów naszej planety opady śniegu mogą przyczynić się do szybkiego nagromadzenia lodowców. Niestety obecnie nie obserwuje się takiego zjawiska.

Znacznie bardziej prawdopodobne jest przesunięcie się stref klimatycznych na Ziemi ku biegunom. Powodów tego zjawiska może być wiele. Nadmierne ogrzewanie mas powietrza może doprowadzić do zmian cyrkulacji lokalnych i wielkoskalowych prądów powietrznych nad powierzchnią kuli ziemskiej. Efekt cieplarniany może również doprowadzić do zmian systemu prądów morskich. Nietrudno domyśleć się, jakie będą skutki przemieszczenia się stref klimatycznych. Nowe warunki klimatyczne wywołają liczne klęski żywiołowe. Zmienione układy ciśnień atmosferycznych spowodują powstanie huraganów, cyklonów i tornad. Zwiększone parowanie wód w morzach i oceanach doprowadzi do występowania nawalnych opadów, a skutkiem tego będą liczne powodzie, a w górach lawiny. Jednocześnie na obszarach położonych w znacznych odległościach od wielkich zbiorników wodnych w wyniku szybkiego wysychania gleb utrzymywać się będą susze. Długotrwałym suszom bardzo często towarzyszą pożary lasów, spalana biomasa emituje do atmosfery olbrzymie ilości smogu zawierającego CO2,CO, tlenki azotu i inne gazy dodatkowo zwiększające natężenie efektu cieplarnianego.
Gatunki roślin i zwierząt, które nie dostosują się do zmienionych warunków, po prostu znikną z powierzchni Ziemi. Wiele chorób związanych z gorącym klimatem (np. malaria) dotknie ludzi i zwierzęta, które są całkowicie na nie nieodporne.
Skutki zmiany klimatu wskutek efektu cieplarnianego można także będzie zauważyć w gospodarce człowieka, a ściślej mówiąc - w rolnictwie. Skład chemiczny gleb, charakterystyczny dla danej strefy klimatycznej, nie zmieni się tak gwałtownie, jak temperatura i wilgotność powietrza. Nie będzie więc możliwa uprawa roślin na terenach o większych, niż dotychczas szerokościach geograficznych, mimo sprzyjających tam warunków klimatycznych, gdyż gleby nie będą urodzajne. Rolnictwo nie będzie w stanie wyżywić zwiększającej się wciąż liczby ludności.
Konsekwencje ocieplenia klimatu na kuli ziemskiej są więc oczywiste - wiele osób zginie w wyniku coraz liczniejszych klęsk żywiołowych. Jeszcze więcej ludzi umrze z głodu i na skutek nowych chorób. Efekt cieplarniany jest więc problemem ekologicznym stanowiącym realne zagrożenie dla ludzkości. Powinniśmy zatem już dziś poszukiwać rozwiązań tego problemu oraz zastanowić się nad tym, co robić, aby niedopuścić do zwiększania się globalnego ocieplenia.

Rozwiązania problemu

Każdy człowiek może wpływać na zmniejszanie się natężenia efektu cieplarnianego poprzez np. segregację śmieci i używanie surowców wtórnych. Ogranicza w ten sposób emisję dwutlenku węgla, która towarzyszy produkcji opakowań, a także zmniejsza wydzielanie metanu, powstającego przy rozkładzie substancji organicznych na wysypiskach śmieci.
Społeczeństwo powinno oszczędzać energię. Dzięki zastosowaniu materiałów izolacyjnych w budynkach mieszkalnych możliwe jest zabezpieczenie przed nadmierną utratą energii cieplnej. Energia elektryczna może być oszczędzana dzięki używaniu nowoczesnych, energooszczędnych urządzeń elektrycznych. W ten sposób zmniejszmy zapotrzebowanie na energię, a więc możliwe stanie się ograniczenie jej produkcji przez ciepłownie i elektrownie. Tym samym zmniejszy się emisja dwutlenku węgla do atmosfery.
Należy również zwrócić uwagę na efektywność pracy ciepłowni i elektrowni. Obliczono, że wykorzystywane jest tylko 35% energii, która powstaje w wyniku spalania węgla. Pozostałe 65% ulega rozproszeniu, głównie w postaci ciepła. Po przeprowadzeniu odpowiednich remontów elektrowni możliwe stałoby się wykorzystanie tej energii np. do otrzymania gorącej wody służącej potrzebom przemysłu lub do ogrzewania budynków mieszkalnych.
W celu zmniejszenia emisji dwutlenku węgla do atmosfery należy zacząć poszukiwać alternatywnych źródeł energii. Skłania nas do tego również zjawisko gwałtownego zmniejszania się ilości paliw kopalnych (oblicza się, że światowe zasoby ropy naftowej wyczerpią się za ok. 30 lat, natomiast pokłady węgla kamiennego zostaną wyeksploatowane za ok. 170 lat). Odnawialne zasoby energii praktycznie nigdy się nie wyczerpią. Należy do nich zaliczyć: promieniowanie słoneczne, ruchy mas powietrza, ruchy wód w rzekach, fale i pływy morskie, energia geotermiczna. Najważniejszym źródłem energii dla Ziemi jest promieniowanie Słońca. Wraz z promieniowaniem słonecznym do Ziemi dociera moc o wartości ok. 178 000 TW (1 TW = 100000 MW), z czego ok. 30% jest odbijane przez atmosferę, ponad 45% pochłaniają lądy i morza w postaci ciepła, pozostała jest zużywana w cyklu hydrologicznym, w procesach fotosyntezy oraz do wprawiania w ruch powietrza i fal morskich. Dla porównania spalająca rocznie od 1,5 do 2 mln ton węgla średniej wielkości elektrownia ma moc zaledwie 1000 MW.
Znaczny udział w emisji dwutlenku węgla i tlenków azotu mają pojazdy silnikowe. Aby ograniczyć emisję gazów cieplarnianych przez samochody należy próbować nakłonić społeczeństwo do korzystania ze środków transportu publicznego lub innych pojazdów, nie zanieczyszczających środowiska - rowerów.
W regulacji zawartości dwutlenku węgla w atmosferze ziemskiej najistotniejsze znaczenie mają lasy. Obliczono, że 1 ha lasu może pochłonąć 250 kg dwutlenku węgla. Należy całkowicie zaprzestać wycinania lasów równikowych oraz ograniczyć wycinanie i wypalanie pozostałych lasów. Należy również sadzić nowe drzewa w miejsce wyciętych.
O działaniach mających na celu ograniczenie emisji dwutlenku węgla do atmosfery rozmawiano w czerwcu 1992 na tzw. "Szczycie Ziemi" w Rio de Janeiro w Brazylii. Uchwalono tam tzw. Ramową Konwencję, która uzupełniała tzw. Protokół Montrealski z 1978 postanowieniami w sprawie zmniejszenia emisji CO2, CH4 i N2O.
Ograniczanie emisji świadczy o tym, że narody zdają sobie sprawę z zagrożenia, jakie może stanowić efekt cieplarniany i próbują przeciwdziałać natężaniu się globalnego ocieplenia.
Dziura ozonowa
W atmosferze ziemskiej na wysokości od 10 do 50 km występuje warstwa o podwyższonej koncentracji ozonu (O3) - ozonosfera. Maksymalne stężenie ozonu utrzymuje się na wysokości ok. 23 km. Od końca lat 70 - tych obserwuje się znaczny spadek zawartości ozonu, szczególnie nad Antarktydą, w rejonie bieguna południowego. Zmniejszenie koncentracji ozonu w ozonosferze jest nazywane dziurą ozonową.


Powstawanie dziury ozonowej

Dziura ozonowa powstaje wskutek niszczenia warstwy ozonowej przez związki chemiczne, zwane freonami.
Pod wpływem promieniowania ultrafioletowego freony ulegają fotolizie, w wyniku czego uwalniane zostają atomy chloru. Chlor wchodzi w reakcję z ozonem, tworząc równie aktywny tlenek chloru (ClO) oraz zwykły tlen (O2). Następnie reakcja dwóch cząsteczek tlenku chloru prowadzi do powstania cząsteczki dwutlenku chloru (ClO2) oraz uwolnienia kolejnego atomu chloru, który rozbija następne cząsteczki ozonu. Oprócz tego dwutlenek chloru może ulegać rozpadowi na atom chloru oraz dwuatomową cząsteczkę tlenu.
Poniżej zamieściłem reakcje chemiczne zachodzące podczas niszczenia ozonu:

CnClxFy CnFy + x Cl

Cl + O3 ClO + O2

2 ClO ClO2 + Cl

ClO2 Cl + O2
Przedstawione powyżej reakcje przebiegają aż do całkowitego wyczerpania się cząsteczek ozonu lub do momentu usunięcia chloru wskutek innych reakcji chemicznych.
Ocenia się, że roczne tempo spadku zawartości ozonu wynosi poniżej 0,2% w okolicach równika oraz od 0,4 do 0,8% w umiarkowanych szerokościach geograficznych. Jednak największe (i wciąż zwiększające się) tempo spadku ozonu stratosferycznego obserwuje się w rejonie bieguna południowego w okresie wczesnojesiennym (przełom września i października). W okresie 1987-92 całkowita zawartość ozonu stratosferycznego zmniejszyła się o ponad 50% w stosunku do zawartości z 1970 roku, kiedy to średnia październikowa wynosiła jeszcze 300D ( 1D [dobson] - jednostka używana do określania koncentracji ozonu, nazwana na cześć konstruktora przyrządów pomiarowych ).
Można zadać pytanie: dlaczego dziura ozonowa powstaje właśnie nad Antarktydą (na półkuli południowej), mimo że największa emisja gazów niszczących ozon występuje na półkuli północnej, na terenach najbardziej rozwiniętych i uprzemysłowionych. Oto mechanizm powstawania dziury ozonowej nad Antarktydą:
Powietrze zanieczyszczone freonami, halonami i innymi gazami, na skutek różnic ciśnień zostaje wprawione w ruch i jest przenoszone na pewne odległości. Wraz z wielkoskalowymi prądami powietrznymi w atmosferze ziemskiej (wiatrami stratosferycznymi) masy zanieczyszczonego powietrza są następnie roznoszone po całej kuli ziemskiej. Obecnie freony występują nad całą powierzchnią kuli ziemskiej, nawet w miejscach tak odległych od uprzemysłowionych terenów (Europa, USA), jak Antarktyda. W okresie, kiedy na półkuli północnej rozpoczyna się pora wiosenna, nad Antarktydą zaczyna się noc polarna. Tworzy się wtedy regularny, stabilny, trwający pół roku wir, w którym powietrze krąży wokół bieguna południowego. Masy powietrza antarktycznego są wtedy całkowicie odizolowane od dopływu powietrza równikowego, zawierającego zawsze wysokie stężenie ozonu stratosferycznego. Reakcje niszczenia ozonu przez freony przebiegają szybciej, niż reakcje powstawania ozonu, zatem jego koncentracja wyraźnie ulega zmniejszeniu. W 1982 roku zaobserwowano kilkudniowy całkowity brak ozonu w dolnych warstwach stratosfery.
Z przedstawionego powyżej mechanizmu powstawania dziury ozonowej można łatwo zauważyć, jak bardzo ważną rolę dla ludzkości spełniają lasy równikowe, które poprzez produkcję olbrzymich ilości tlenu atmosferycznego (O2) umożliwiają powstawanie ozonu (O3).

Gazy niszczące ozon
Wśród gazów wywierających niszczący wpływ na warstwę ozonową największy udział mają freony, halony oraz tlenki azotu.
Pod względem chemicznym freony (CFC) są pochodnymi chlorowcowymi węglowodorów nasyconych. W cząsteczce zawierają atomy chloru i fluoru, niekiedy również bromu. Powstają przez działanie fluorowodorem na halogenopochodne metanu lub etanu w obecności katalizatora - pięciochlorku antymonu. Niższe freony charakteryzują się znaczną prężnością pary w niskich temperaturach i wysokim ciepłem parowania. Ze względu na dużą pojemność cieplną mają znaczny udział w zwiększaniu się efektu cieplarnianego. Nie mają zapachu lub posiadają zapach eteru. Są bezbarwne i nietoksyczne. Znalazły zastosowanie w produkcji urządzeń chłodzących i klimatyzacyjnych oraz (obecnie coraz rzadziej) w produkcji kosmetyków i dezodorantów. Najbardziej znanymi i najczęściej używanymi freonami jest dichlorodifluorometan (CCl2F2), zwany freonem F-12 oraz dichlorotetrafluoroetan (C2Cl2F4), zwany freonem F-114. Obecnie oblicza się, że w atmosferze znajduje się ponad 20 mln ton freonów.
Halony są pochodnymi fluorowcowymi metanu i etanu. Są nietoksycznymi gazami lub cieczami. Nie ulegają spalaniu. Stosowane są do produkcji gaśnic halonowych.
Tlenki azotu powstają w ozonosferze głównie w wyniku spalania paliw przez silniki samolotów i rakiet. W znacznych ilościach tlenki azotu wydzielane są do ozonosfery również w wyniku wybuchów jądrowych.

Skutki niszczenia warstwy ozonowej
Ozonosfera pochłania bardzo szkodliwe dla wszystkich żywych organizmów promieniowanie ultrafioletowe (UV) o długości fali poniżej 390 nm. Niszczenie warstwy ozonowej prowadzi do zmniejszania się efektywności pochłaniania promieni UV. W wyniku tego organizmy są narażone na zwiększone promieniowanie ultrafioletowe.
Nadmiar promieni UV może doprowadzić do zakłócenia równowagi całych ekosystemów. Promieniowanie ultrafioletowe przenika wodę do kilku metrów wgłęb (w przypadku wód czystych nawet do kilkunastu metrów). Powoduje to zamieranie szczególnie wrażliwych organizmów roślinnych i zwierzęcych tworzących plankton. Konsekwencje tego są widoczne w następnych ogniwach łańcucha troficznego. Zmniejszy się więc występowanie ryb żywiących się planktonem oraz ryb drapieżnych.
Promieniowanie ultrafioletowe wpływa również niekorzystnie na rośliny. Wśród roślin, które wykazują reakcję na promienie UV, ponad dwie trzecie gatunków jest na nie wrażliwe. Należy przy tym zaznaczyć, że są to głównie gatunki roślin uprawnych i przemysłowych.
Zwiększenie się natężenia promieniowania ultrafioletowego na Ziemi odbije się z pewnością w gospodarce człowieka. Zmniejszenie liczebności populacji ryb na skutek zaniku planktonu doprowadzi do znacznie mniejszych połowów na określonym terenie. Ucierpi więc rybactwo i rybołówstwo. W wyniku niszczenia przez promienie UV chlorofilu roślin uprawnych (np. zbóż) zmniejszą się plony, a więc ucierpi rolnictwo.
Promieniowanie ultrafioletowe może jednak negatywnie wpływać bezpośrednio na ludzi. Poprzez wytwarzanie pigmentów w skórze, człowiek tylko w niewielkim stopniu jest zdolny do obrony. Nadmierne promieniowanie UV może osłabiać u ludzi system immunologiczny i tym samym zmniejszać odporność na infekcje i choroby. Wśród chorób tych najgroźniejsze są z pewnością choroby nowotworowe, a szczególnie nowotwory skóry (np. czerniak). Ponadto promieniowanie ultrafioletowe powoduje podrażnienie spojówek, a przez to występowanie licznych chorób oczu, głównie zaćmy. Promienie UV powodują także przyspieszenie procesów starzenia się skóry.
Jeśli do środowiska wciąż wydzielane będą freony i inne gazy niszczące ozon, to w niedalekiej przyszłości dziura ozonowa powiększy znacznie swój rozmiar i wkrótce pojawi się nad całą kulą ziemską. Nie będzie to już więc dziura ozonowa, ale całkowity zanik ozonu w atmosferze ziemskiej.

Ochrona warstwy ozonowej
Już w 1971 roku dwóch chemików zauważyło i udowodniło niszczący wpływ freonów na warstwę ozonową atmosfery. Byli nimi prof. Sherwood Rowland i dr Mario Molina (laureaci Nagrody Nobla w dziedzinie chemii z 1995 roku). Komisja do spraw ochrony środowiska ONZ zwróciła uwagę na to zjawisko dopiero w 1976 roku. Od tego czasu freony znalazły się na liście związków chemicznych niebezpiecznych dla środowiska naturalnego. Konkretne działania mające na celu niedopuszczenie do zmniejszania się warstwy ozonowej nad powierzchnią kuli ziemskiej zaczęto jednak podejmować dopiero od 1982 roku, kiedy to dr Joe Farman odkrył na Antarktydzie Zachodniej całkowity zanik ozonu w atmosferze. W 1987 roku w celu ochrony warstwy ozonowej z inicjatywy UNEP (Programu Ochrony Środowiska Narodów Zjednoczonych) 31 państw (w tym Polska) podpisało Protokół Montrealski. Zakładano w nim 50 - procentowe ograniczenie produkcji freonów do 2000 roku w stosunku do wartości z 1986 roku. Od 1990 roku rzeczywiście obserwuje się zmniejszenie tempa wzrostu freonów w atmosferze - z 5% rocznie do mniej niż 3%. Ponadto 11 października 1990 roku Polska stała się członkiem Konwencji Wiedeńskiej w sprawie ochrony warstwy ozonowej, w myśl której zakazana jest produkcja freonów oraz import zagranicznych urządzeń chłodzących zawierających freony. Można więc mówić o znacznym wzroście świadomości władz i społeczeństwa, co jest pocieszającym zjawiskiem. W produkcji kosmetyków i dezodorantów nie stosowane są już praktycznie freony, a jako nośniki używane są inne, nieszkodliwe dla środowiska gazy - propan i butan. Kosmetyki te oznaczane są jako "CFC frez" lub "ozon friendly" (przyjazne ozonowi). Także nowoczesne lodówki i chłodziarki są urządzeniami bezfreonowymi.

Jednak pomimo wszelkich działań mających na celu niedopuszczenie do dalszej emisji freonów i halonów, w ciągu najbliższych kilkudziesięciu lat nie stanie się możliwe odbudowanie warstwy ozonu nawet do grubości sprzed 20 laty.

Kwaśne deszcze
Kwaśne deszcze, to opady atmosferyczne zawierające w kroplach wody zaabsorbowane gazy - dwutlenek siarki (SO2), tlenki azotu i inne bezwodniki kwasowe oraz produkty ich reakcji w atmosferze - słabe roztwory kwasu siarkowego (IV), znacznie groźniejszego kwasu siarkowego (VI), kwasu azotowego (V).

Powstawanie kwaśnych deszczy
Kwaśne deszcze powstają głównie na obszarach, gdzie atmosfera jest narażona na długotrwałą emisję dwutlenku siarki i tlenków azotu, zarówno ze źródeł naturalnych, np. czynnych wulkanów, jak również sztucznych - spaliny powstające w wyniku spalania zasiarczonych paliw - węgla brunatnego i kamiennego.

Skutki występowania kwaśnych deszczy
Kwaśne deszcze wywierają negatywny wpływ na faunę i florę. Są niewątpliwą przyczyną licznych chorób układu oddechowego. Znacznie przyspieszają korozję różnego rodzaju konstrukcji metalowych oraz zabytków.

Ochrona przed kwaśnymi deszczami

Zapobieganie występowania kwaśnych deszczy polega na budowaniu instalacji wyłapujących tlenki siarki i azotu ze spalin emitowanych do atmosfery oraz ograniczaniu spalania paliw zawierających siarkę i jej związki, głównie węgla brunatnego i kamiennego.
Przeciwdziałanie występowaniu kwaśnych deszczy powinno mieć charakter międzynarodowy, ponieważ nierzadko opady kwaśnego deszczu trafiają na obszary znacznie oddalone od źródeł zanieczyszczeń atmosfery.

Smog
Słowo, które powstało ze zbitki dwóch angielskich słów: smoke – dym i fog – mgła. Jest to nienaturalne zjawisko atmosferyczne polegające na współdziałaniu zanieczyszczeń powietrza spowodowanych działalnością człowieka oraz niekorzystnych naturalnych zjawisk atmosferycznych: znacznej wilgotności powietrza (mgła) i braku wiatru. Smog zawiera zawieszone w powietrzu cząstki stałe (pyłowe) oraz szkodliwe związki chemiczne: tlenki azotu oraz tlenki siarki. Te szkodliwe związki chemiczne, pyły (kurz) i znaczna wilgotność są zagrożeniem dla zdrowia.
Powstawaniu smogu sprzyja położenie zagrożonych nim obszarów w obniżeniach; rozróżnia się smog fotochemiczny i smog kwaśny.
Smog fotochemiczny, zwany też utleniającym, tworzy się w czasie silnego nasłonecznienia w wyniku fotochemicznych przemian występujących w dużym stężeniu tlenków azotu, węglowodorów, zwłaszcza nienasyconych (alkeny) i innych składników spalin (głównie samochodowych). Ze związków tych powstają bardzo reaktywne rodniki, które z kolei ulegając przemianom chemicznym tworzą toksyczne związki, głównie nadtlenki, np. azotan nadtlenku acetylu. Składnikami tego typu smogu są także: ozon, tlenek węgla (czad), tlenki azotu, aldehydy, węglowodory aromatyczne.
Smog kwaśny, zwany też mgłą przemysłową, powstaje w wilgotnym powietrzu silnie zanieczyszczonym tzw. gazami kwaśnymi, głównie dwutlenkiem siarki (SO2) i dwutlenkiem węgla (CO2), oraz pyłem węglowym. Smog, ze względu na dużą koncentrację agresywnych czynników chemicznych, stanowi zagrożenie dla zdrowia ludzi i zwierząt, wywołuje choroby roślin i powoduje niszczenie materiałów.
Smog kwaśny obserwowano już w 1 poł. XX w., m.in.: 1930 w dolinie Mozy (Belgia), 1948 w Donorze (USA), oraz 1948, na przeł. 1952 i 1953, 1956 w Londynie, gdzie 1952/53 w ciągu 7 dni wskutek smogu (przyczyna bezpośrednia lub pośrednia) zmarło 4000 osób, 1956 - 1000 osób, nieco później wystąpił smog fotochemiczny w Los Angeles, Atenach i in. miastach. W Polsce smog kwaśny występuje w Krakowie i niektórych miastach Górnego Śląska.
Skutki smogu.

1.Ograniczenie widoczności.
2 Może wywołać astmę oraz jej napady, a także powodować zaostrzenie przewlekłego zapalenia oskrzeli, niewydolność oddechową lub paraliż układu krwionośnego i natychmiastową śmierć przez uduszenie.
3.Powoduje korozję.
4. Utrudnia oddychanie organizmom, a Ziemi wydalanie ciepła.
Ochrona powietrza

Zagadnienia związane z ochroną powietrza reguluje ustawa z dnia 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska. Ustawa ta określa zasady ochrony i racjonalnego kształtowania środowiska, zmierzające do zapewnienia współczesnemu i przyszłym pokoleniom korzystnych warunków życia.
Z pewnością nigdy nie będzie możliwe całkowite zatrzymanie emisji szkodliwych substancji.Aby chronić nasze powietrze, należy więc podejmować działania mające na celu ograniczenie emisji zanieczyszczeń do atmosfery.
Wszystkie fabryki, huty i inne ośrodki przemysłu posiadające kominy odprowadzające gazy spalinowe powinny stosować filtry kominowe. W celu zmniejszenia emisji odorów, rafinerie powinny być zaopatrzone w urządzenia służące do dezodoryzacji gazów, umieszczone najlepiej tuż przy emitorach. Spadek poziomu emisji szkodliwych gazów będzie również następował wraz z doskonaleniem hermetyzacji produkcji (produkcji całkowicie odizolowanej od środowiska).
Ważną rolę w zanieczyszczaniu powietrza odgrywa komunikacja. Aby ograniczyć emisję szkodliwych składników spalin samochodów silnikowych, należy zamontować w swych autach różnego rodzaju katalizatory, które wpływają na jakość spalania benzyny. W celu ograniczenia emisji tlenku ołowiu, należy stosować benzynę bezołowiową, całkowicie pozbawioną czteroetylku ołowiu. Aby chronić atmosferę przed nadmiernym zanieczyszcza-niem tlenkiem węgla należy również wyeliminować z ruchu ulicznego często spotykane samochody o bardzo złym stanie technicznym, które nie spalają całkowicie paliw. Praktycznie każdy człowiek może wpłynąć na zmniejszenie poziomu emisji spalin samochodowych poprzez korzystanie ze środków transportu publicznego oraz pojazdów nie zanieczyszczają-cych powietrza atmosferycznego, takich, jak rowery.
Bardzo skuteczną metodą ograniczenia emisji dwutlenku siarki SO2 do atmosfery jest proces odsiarczania węgla. Jednym ze sposobów na odsiarczenie węgla jest doprowadzenie do reakcji chemicznej między związkami siarkowymi, a dodanym Fe3O4:
Fe3O4 + 3H2S + H2 3FeS + 4H2O
Następnie otrzymany siarczek żelaza (II) jest poddawany spalaniu, w wyniku czego powstaje dwutlenek siarki:
4FeS + 7O2 2Fe2O3 + 4SO2
Powstały dwutlenek siarki jest redukowany za pomocą węgla do czystej chemicznie siarki:
C + SO2 CO2 + S
Przedstawiony powyżej sposób odsiarczania węgla jest bardzo skuteczny, ale niestety również kosztowny.
Znaczne ilości gazów zanieczyszczających powietrze atmosferyczne są emitowane również w wyniku spalania paliw w celu ogrzewania budynków mieszkalnych. Należy w tym przypadku używać filtrów służących do oczyszczania gazów odprowadzanych przez kominy do atmosfery. Można także stosować materiały izolacyjne chroniące budynki przed nadmierną utratą ciepła, dzięki czemu możliwe będzie ograniczenie spalania węgla, a tym samym zmniejszy się emisja CO2 i CO. Należy również zastanowić się nad wykorzystywaniem do ogrzewania budynków paliw nie powodujących wydzielania tak dużych ilości pyłów, jak węgiel kamienny. Mam tu na myśli oleje oraz gaz ziemny.
W celu ograniczenia emisji gazów powstających w wyniku rozkładu substancji organicznych znajdujących się na wysypiskach śmieci, należy opracować nowe metody utylizacji śmieci.

W ośrodkach miejskich można chronić powietrze poprzez właściwe lokowanie nowych nowych zakładów przemysłowych. W dużych miastach ważną rolę pełnią również izolacyjne pasy zieleni, które, oprócz pochłaniania pewnych ilości zanieczyszczeń powietrza, tłumią hałas (pas zieleni o szerokości 50 m zmniejsza natężenie hałasu o 20 dB).
Obecnie zanieczyszczenie powietrza nie jest już niestety tylko problemem lokalnym. Stanowi problem międzynarodowy. W związku z tym podpisywane są umowy międzynarodowe dotyczące ograniczania emisji szkodliwych gazów i pyłów. Dnia 13 listopada 1979 roku 35 krajów (w tym Polska) podpisało Konwencję o Transgranicznym Zanieczyszczeniu Powietrza. Ma ona na celu ograniczanie ilości i zasięgu rozprzestrzeniania zanieczyszczeń powietrza.

Dodaj swoją odpowiedź
Chemia

Zanieczyszczenia powietrza

ZANIECZYSZCZENIA POWIETRZA

Tlenki węgla, azotu, lotne węglowodany i inne zanieczyszczenia powietrza
1. Tlenki azotu
2. Dwutlenek siarki
3. Tlenek węgla.
4. Wielopierścieniowe węglowodany aromatyczne (WWA)
5. Związ...

Biologia

Zanieczyszczenia powietrza i sposoby ich usuwania, zanieczyszczenia wody i sposoby ich usuwania

ZANIECZYSZCZANIE POWIETRZA

Powietrze – mieszanina gazów tworząca atmosferę ziemską; składa się z azotu (ok. 78%), tlenu (ok. 21%), gazów szlachetnych, dwutlenku węglu, pary wodnej i innych. Skroplone powietrze służy do otrzymywa...

Biologia

Zanieczyszczenia powietrza

Co to jest atmosfera?

Atmosferę Ziemi tworzy mieszanina gazów, potocznie zwana powietrzem. W początkowej fazie formowania się naszej planety, w czasie wybuchów wulkanów i stygnięcia roztopionej materii skalnej, były uwalniane różn...

Biologia

Zanieczyszczenia powietrza i walka z nimi.

Co to jest zanieczyszczenie powietrza?

Oddziaływanie szkodliwych substancji zawartych w powietrzu ma na człowieka bezpośredni charakter - zatruwają jego organizm w procesie oddychania. Substancje te działają także pośrednio w znaczn...

Biologia

Zanieczyszczenia powietrza

Atmosfera stanowi jeden z trzech podstawowych elementów środowiska.
Różni się on w sposób istotny od pozostałych(hydrosfera i toposfera) zdecydowanie łatwiejszą migracją zanieczyszczeń. Na skutek ruchów mas powietrza zanieczyszczenia...

Biologia

Zanieczyszczenia powietrza

Co to jest zanieczyszczenie powietrza?

Oddziaływanie szkodliwych substancji zawartych w powietrzu ma na człowieka bezpośredni charakter - zatruwają jego organizm w procesie oddychania. Substancje te działają także pośrednio w znaczn...