1. 4(x+7)(x+6) - (2x+3)² + 1 = 0 4(x²+13x+42)-(4x²+12x+9)+1=0 4x²+52x+168-4x²-12x-9+1=0 40x+160=0 40x=-160 x=-40 2. 2(x-2)² ≥ (x-3)(x+3) - x + x² - 3 2(x²-4x+4)≥x²-9-x+x²-3 2x²-8x+8≥2x²-x-12 2x²-8x+8-2x²+x+12≥0 -7x+20≥0 7x≤20 x≤20/7 x≤2 i 6/7
4(x+7)(x+6) - (2x+3)² + 1 = 0 4x+28 * x + 6 - 2x² + 2*2x*3 + 3² +1 = 0 4x+28 * x + 6 - 2x² + 12x + 9 + 1 = 0 4x + 28x + 6 - 2x² + 12x + 9 + 1 = 0 32x + 6 - 2x² + 12x + 9 + 1 = 0 44x +16 - 2x²=0 2(x-2)² ≥ (x-3)(x+3) - x + x² - 3 2(x-2)² = 2 * x² - 2*x*2 + 2² = 2 * x² - 4x + 4 = 2x² - 8x + 8 (x-3)(x+3) - x + x² - 3 Tego nie umeim
1 4(x+7)*(x+6)-(2x+3)²+1=0 4(x²+6x+7x+42)-(4x²+12x+9)+1=0 4x²+24x+28x+168-4x²-12x-9+1=0 40x=9-1-168 40x=-160 x=-4 2 2(x-2)²≥(x-3)*(x+3)-x+x²-3 2(x²-4x+4)≥x²-9-x+x²-3 2x²-8x+8-x²+9+x-x²+3≥0 -7x≥-8-9-3 -7x≥-20 x≤20/7 x∈<-nieskończoność,20/7>