Izotopy i ich zastosowanie
Izotopy to odmiany tego samego pierwiastka różniące się liczbą neutronów w jądrze. Izotopy posiadają te same właściwości chemiczne, natomiast różnią się nieznacznie właściwościami fizycznymi (np. gęstością, temperaturą wrzenia i topnienia, oporem elektrycznym). Liczba masowa charakteryzuje poszczególne izotopy, np. izotopy tlenu:
16O - tlen-16
17O - tlen-17
18O - tlen-18
Oprócz z 272 stabilnych izotopów wszystkich pierwiastków znanych jest ok. 2000 ich izotopów promieniotwórczych (radioizotopów), o różnych czasach połowicznego zaniku i rodzajach rozpadu promieniotwórczego. Działanie izotopów promieniotwórczych polega na tym, że w sposób ciągły wysyłają promieniowanie alfa, beta, gamma.
Izotopy promieniotwórcze maja ogromne znaczenie w lecznictwie. Na przykład jod 31I, technet 99Tc, czy potas 40K stosuje się w diagnostyce medycznej. Dzięki nim uzyskuje się tzw. Warstwowe obrazy mózgu i innych organów wewnętrznych.
W przemyśle izotopy promieniotwórcze wykorzystuje się m. in. w tzw. defektoskopii przy badaniu ewentualnych ukrytych wad wyrobów oraz sprawdzaniu szczelności sprawnych metali, przy badaniu składu przepływających cieczy i gazów, przy określaniu jakości materiałów budowlanych, gęstości cementu i ziemi, w przeróbce kopalin przy ustalaniu stopnia wzbogacenia rudy, w czujnikach dymu zainstalowanych w pomieszczeniach, gdzie łatwo o pożar lub gdzie znajduje się cenna aparatura, w czujnikach oblodzenia samolotów.
Izotopy promieniotwórcze mają również zastosowanie w biologii przy śledzeniu obiegu i roli mikroelementów.
W geologii są wykorzystywane do radiometrycznych metod geologicznych, a w badaniach podstawowych - w badaniach dyfuzji i badaniach strukturalnych.
Izotopy mają również zastosowanie w reaktorach jądrowych, które służą do wytwarzania pary zasilającej turbiny elektrowni atomowych.